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Abstract 

The command and control (C2) of shared space resources are vulnerable to logical 

credential forgery and impersonation attacks among standardized and interoperable 

wireless radio frequency (RF) networks.  Threats could come from trusted operators 

(insiders) or from external sources (outsiders). An attacker may gain unauthorized network 

access and illegally cross into C2 boundaries when conventional network authentication 

fails.  This research proposes an integrated trust management system that uses both 

application-layer and physical-layer trust markers to authenticate users and their 

communication sources. In essence, the results from physical-layer RF-DNA 

fingerprinting techniques are used to improve application-level trust schemes based on 

command patterns, message structure, and other discernible markers through the use of 

Bayesian reasoning using an approach adapted from the medical disease diagnostic testing 

community.  In this adapted approach, trust markers of behavior can be used to detect 

deviations from what is expected, sometimes called byzantine behavior. Suspect 

communication or traffic patterns are labeled as eNDs (electronic network-diseases). Trust 

management enabled devices consider the diagnostics of logical and pathological RF-DNA 

credential pairs and application-layer trust markers to predict and mitigate such eNDs.  The 

method introduced in this dissertation demonstrates an end-to-end physical RF network 

prototype; introduces a tracking capability for multi-organizational access, and improves 

upon the accuracy of credential pair identification using either physical-layer or 

application-layer techniques in isolation.  
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In the experiments run, the discrimination of insider vs. outsider threats improved 

by 22%, uplink availability was extended by 51.2% for non-offenders, and the proposed 

trust system achieved 100% posterior predictions using moderate tolerance settings. The 

trust system also reduced logical credential forgery acceptance by 84% among tested 

samples. The system shows promise for more general application in domains including 

Cyber, Space and eHealth ecosystems. 
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BIOLOGICALLY INSPIRED NETWORK (BIONET) SECURITY BOUNDARY 
PROTECTION 

 
Look deep into nature… and then you will understand… (Albert Einstein) 

 
I. Introduction  

1.1 Background 

The overarching goal of this research aims to discover, characterize and propose a multi-

factor credential pairing framework that enhances the mitigation of fraudulent (infectious) 

credential acceptance and unauthorized access into electronic network security boundaries.  Early 

symptoms of network abnormalities, resulting from the acceptance of infectious credentials, may 

originate from insider (trusted) or outsider (untrusted) electronic sources and, if not properly 

treated, may lead to a total loss of resource availability (e.g. a distributed denial of service (DDoS) 

attack) for critical ground resources that support multi-organizational missions in non-benign 

environments.  A policy-based categorization of abnormal behavior is informally termed electronic 

network-disease (eND).  An investigative study is conducted to quantify the inherent physical RF 

origin attributes that best predict eND using Bayes Theorem in uncertainty to enhance the 

situational awareness (SA) of Operators and key players whom defend otherwise healthy RF 

networks.  More specifically, a representative miniaturized ultra-high frequency (UHF) CubeSat 

uplink access boundary, protected using a conventional distributed consolidated trust management 

system (CTMS) [1] [2], integrates pathological RF-Biomarkers of eND to validate the origin 

integrity of logical credential claims [3] [4] [5] [6].   

The hypothesis herein is that logical (digital bit pattern matching) and pathological (trusted 

RF-Measurements of logical credential transmissions) network access credential pairing may 

improve conventional authentication schemes in non-benign electronic RF environments. 
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1.2 Motivation. 

Deoxyribose nucleic acid (DNA) was originally invented by Sir Alec Jeffery in 1984, 

whose initial application of genetic fingerprinting using DNA was purposed to control immigration 

border crossings between established physical geographic boundaries [7] [8]. During this process, 

the original blood samples from individuals of interest are collected and stored in a central storage 

location.  These raw samples were then processed using Jeffrey’s techniques to extract the 

individual’s naturally occurring DNA markers using a process involving electrophoresis.  The 

extracted DNA markers are then stored as a truth reference template (benchmark) in a database for 

safekeeping and credential dispute resolution.   

During an immigration or geographical border crossing dispute, a previously stored 

template of the DNA marker levels is compared to a new sample collected from some person of 

interest and used as a fingerprint (marker).  To authenticate the origin of the individual as a native 

resident of a country or not, a fresh DNA sample is extracted from the person of interest and a 

comparison is made to the database (benchmark template) of known DNA profiles.  If the new 

DNA sample levels match specified levels of the known template, a decision-support response(s) 

was made to augment the authentication of the targeted person of interest’s geographical residency 

origins.  If there is no fingerprint match, the person of interest generally was labeled as illegal until 

further mechanisms (additional evidence testing) proved otherwise. 

In a similar fashion of applying DNA concepts to identify faces with fingerprints [9], 

electronic RF fingerprinting concepts are applied towards the identification of electronic devices 

and their RF transmission origins for the purpose of verification of logical credential claims in an 

uncertain threat prevalent (e.g. imposter) Cyberspace ecosystem.   
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Just as physical land boundaries are vulnerable to illegal immigrant crossings, SATCOM 

(i.e. CubeSat) network communication links are also vulnerable to unauthorized passage of 

specified RF link boundaries to gain access by imposter entities.  Such unauthorized link access 

(infection) can result in undesirable receiver or network behavior to include a total loss of 

SATCOM resources (spacecraft).  

In some wireless networks, the use of technology is employed to communicate between a 

source and destination device pair, generally referred to as a point-to-point (P2P) network. In a 

satellite receiver’s CDH a remote control device (i.e. ground station) generates an RF waveform 

onto the uplink using a transmitter to logically encoded telecommand messages.  An exemplary 

example is the P2P network link that exists in a typical garage door opener system or car alarm.  

In this example, a transmitter is contained in a remote control unit (handheld or mounted) and a 

receiver (i.e. the opening component) is connected to a garage door motor [10].  

 Whenever an encoded command is received by the garage door motor processing center 

from the remote control unit, the contents of the waveform received is inspected to detect a 

matching remote-control identification code before a response to open, close or do nothing is 

made.  In the case of CubeSat, a representational miniaturized satellite network, the transmitter 

component of a ground station’s transceiver is wirelessly connected to an onboard CDH receiving 

component.  Both transceivers are typically comprised of different integrated circuits and other 

system components.  A terminal node code controller (TNC) is used as an intermediate push-to-

talk (PTT) device that transforms a signal’s digital content to modulated analog waveforms 

between a PC and an FM front-end transceiver using the AX.25 protocol [11].    
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When a TNC component of the ground station is activated, the circuit’s front-end 

transmission device (e.g. ICOM-9100 amateur radio) modulates the logical (bits) onto the analog 

baseband (e.g. 450 MHz FM) signal using some arbitrary standardized protocol (e.g. GMSK).  The 

naturally generated waveform includes the device’s logical (bit-level) identification code (i.e. 

serial number, MAC Address, vehicle ID, FCC ID etc.).  This natural state of the RF transmission 

(RF-Event), prior to demodulation, is of considerable interest in this research to avoid physical RF 

attribute information loss.   

Repeatable transmissions of invariant RF-Event occurrences may be useful in providing a 

basis for physical attribute interpretation of correlated logical bit decoding.    In some cases, where 

frequency division or time division modulation schemes are employed, information can be 

transmitted remotely for a single device using separated channels of a baseband waveform like the 

Air Force’s Tactical Targeting Network Technology (TTNT) or the Army’s Blue Force Tracking 

System (BFT) or the Naval Automatic Identification System (AIS) are examples of self-organized 

TDMA systems [12]. In these cases where identification authentication is required, additional 

information such as telemetry, geospatial location or other aggregation of information (correlated) 

can be transmitted in the same baseband waveform carrier using techniques such as signal 

watermarking or steganography designed as visible or invisible mechanisms that increase the 

confidence of origin integrity [13].   

Currently, these unauthorized activities may originate from an authorized or unauthorized 

transceiver device, making the tracking of those transactions more difficult for attribution as an 

insider vs. outsider threat in a conventional reputation-based trust management scheme.  To 

mitigate the occurrence of unauthorized device link access, a fixed transmitted code pattern is 

changed whenever the ground station’s transmitter is activated.  
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Conventionally, rolling code algorithms are used such that codes are changed or rolled 

according to some previously determined fixed sequence, known only to the transmitter and the 

receiver. This research adapts this behavior and employs a similar scheme in exchanging RF-DNA 

markers between trusted P2P linked pairs.  Any potential eavesdropper or conman would now have 

to guess the start and stop locations of the next credential marker (𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊) (e.g. rolling) code value 

in addition to decoding the binary code.  A simple replay attempt would always fail since the 

algorithm does not allow the same rolling code to be executed consecutively.  Yet still, when a 

rolling code is not utilized and instead a fixed code equivalent is used, the above possibilities still 

hold for vulnerabilities.  In these cases, the potential to extract the digital content of ′𝒘𝒘′ through 

eavesdropping is possible.   

  Moreover, there is no physical evaluation of the detected physical nature of neither the 

waveform nor modulation scheme, since these considerations are already necessary and sufficient 

for standardized and interoperable communication. This research exploits such standardization of 

analog waveform generation and its repeatability which is favorable to discriminate the physical 

waveform characteristics generated during each transmission.  RF-DNA fingerprinting is a robust 

collections process that focuses on the physical characteristics of a generated waveform with 

respect to its instantaneous values in time and space during generation.  These key principles of 

RF-DNA fingerprinting of an RF transmission characteristics of frequency, phase and amplitude 

[14] are adapted in this research.   

1.3 Research Challenges. 

The inherent complexity of a non-standard ground station’s transmission circuit can 

produce significant effects on the final RF fingerprint extracted by a receiving device.  Even 

standardized circuit transmissions contain subtle variations due to multiple physical components. 
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Issues such as device maintenance, user (personnel) changes and command sequence 

modifications can affect the final RF fingerprint emission from a transmission circuit.  

The distance of SATCOM networks far exceeds the length of recent research using RF-

DNA fingerprints.  At greater distances, RF communications experience degraded signals due to 

multiple path loss effects from EMI sources.  At the time of this writing, RF-DNA has been used 

for line-of-sight (LOS) RF communication links such as microwave links, but has not yet been 

employed in a UHF SATCOM ecosystems, where multiple path loss is not that significant [15] 

[16] [17] [18].  As an unintended consequence of interoperability of RF networks, any receiver 

employing standardized and interoperable RF transmissions may initiate shutdown responses as a 

result of misfires, natural and man-made EMI sources or other multiple path loss effects on valid 

RF transmissions.  Finally, the capability to support multiple space mission needs requires more 

expressive policy responses to enable a correct discrimination of behaviors from offensive 

organizational (insider) devices from non-offenders (benign transmission events) while providing 

appropriate decision-support recommendations for true outsider threats.  

1.4 Research Overview 

This dissertation presents a framework to augment network diagnostic utilities in 

classifying the origin integrity of new RF credential claims as benign (high RF origin similarity 

and low risk of forgery) or infectious (low RF origin similarity and high risk of forgery) for causing 

𝑒𝑒𝑒𝑒𝑒𝑒.  Here, 𝑒𝑒𝑒𝑒𝑒𝑒 is a specified occurrence of abnormal network behavior (e.g. denial of service) 

that is likely to result from untreated infectious credential acceptance.  A Multi-factor 

authentication augmentation scheme pairs conventional logical authentication credentials with 

new physical RF attributes of invariant message transmissions.    
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Using the paired credential set, a designated authentication device compares new credential 

extractions from incoming network access requests to a known credential benchmark template for 

the purpose of validating or disputing the origin integrity of claimed access credentials in an 

uncertain non-benign threat prevalent environment.   

In uncertainty, Bayes Theorem is employed to improve the posterior accuracy of 1-1 

credential verification. Additionally, extensions are made to an existing interactive trust algorithm 

to more accurately express insider vs. outsider threats using aggregated credential diagnostics.  For 

illustrative purposes, the research applies findings to a representative CubeSat (miniaturized 

satellite) network where a trusted source (fixed ground-station) transmits authentic RF credential 

claims to an uplink receiver functioning as the authenticating device, which provides an Euclidean 

distance metric for RF origin similarity comparisons to a trusted RF fingerprint template.  This 

research examines the following overarching research questions;  

RQ1: Can we enhance logical (digital) credential authentication schemes using 

pathological RF-DNA credential diagnostics of RF transmissions?  Can useful RF fingerprint 

extractions from SATCOM networks improve uplink access authentication schemes?  If so, can 

insights gained from these techniques be effectively imparted to cybersecurity key players?  Can 

we enhance logical authentication mechanisms using statistical RF fingerprints pairings? Can RF 

fingerprinting methods improve uplink access availability for non-offenders in a shared resource 

operational ecosystem?  If the number of RF fingerprint features remains constant for any ROI, 

then the diagnostic performance is identical for large or small ROIs.  However, when an identical 

classifier is presented with a relatively small ROI, the diagnostic performance is more dependent 

on sample size rather than the classifier.   
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Chapter I examines these key research questions over four specific and distinct research 

components that comprise Chapters II-V of this dissertation. Summaries of these components 

follow.  Chapter II explores the device heterogeneity problem inherent in RF fingerprinting of 

wireless transmissions which contain invariant regions despite having some portions of the 

message as fixed.  It poses the following research question:  

RQ2: Can non-standard regions of interest (ROIs) be used to develop statistically 

distinct RF fingerprint credentials from electronic device transmissions? 

Specifically, Chapter II seeks to; target non-standard ROI fields for RF fingerprint 

extraction and benchmarking; assess the effects in classification performance of a reduction in 

sample size for a given RF fingerprint.  Non-standard ROIs of logical (bit-level) encoded message 

fields include USERIDs, device IDs or command sequence IDs.  A baseline experiment employs 

six randomly selected ICOM-9100 radios to transmit identical pulsed telecommands which contain 

logical authentication credential fields which are paired with non-standard RF transmission ROI 

fields for unique device identification.   The experiment aims to extract an invariant ROI near the 

standard preamble field as the baseline RF fingerprint (R1).  The ROI is further divided into six 

distinct portions to produce six classification models for comparison.  The results of non-standard 

ROI selection is applied to new telecommand fields that have been transmitted.  Results show that 

using a 66% reduction of the standardized ROI baseline, acceptable levels of accuracy are achieved 

for SNR > 25dB.  Non-standard customization is found to be promising for expressive policy 

specification of RF fingerprinting targets to support various organizational objectives.  The 

effectiveness of the approach is validated using three software-defined radios (SDRs) configured 

in a simple network configuration discussed in Chapters III and IV.   
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Chapter III seeks to position the key insights gained from non-standard ROI selection in 

Chapter II.  It does this by systematically developing RF credential benchmarks to improve 

posterior diagnostic classification.  Specified RF measurements of the transmission’s main 

characteristics are extracted as RF fingerprint features.  The top indicators for device verification 

are called RF-Biomarkers.  An RF-Biomarker is a physical or intrinsic characteristic of an 

electronic communication device’s RF emissions that indicates abnormal process or response 

when the origin integrity of RF transmissions are suspect for causing network-disease.  An 

arbitrary policy is used to specify the development of device specific credential pairings of logical 

authentication fields and physical RF fingerprint benchmarks which. The benchmark credential 

template is validated using a gold standard truth reference which consists of new unseen (logically 

equivalent to benchmark training transmissions) RF transmissions.  More specifically, three 

diagnostic classifiers are developed for RF fingerprint classification comparisons using binary, 

ordinal and continuous valued data decision rules.  Decision rules are employed using thresholding 

to assess the overall Euclidean distance of new transmissions using Gauss-Kronrod exact tolerance 

regions for simple binary classifications.   Chapter III examines the research question(s):  

RQ3: How does the diagnostic accuracy of ordinal, continuous, binary and Bayesian 

decision rules compare against conventional methods?   Subsequent questions include; How 

should threshold boundaries be determined?  Can the concept of extracting RF Fingerprints from 

Non-standard ROIs be extended to entire fixed message fields to support a subset of critical 

commands used for small infrastructure networks? Based on the performance of diagnostic 

classifiers from Chapter III, Chapter IV hones in on the challenge of indicating the true nature of 

insider vs. outsider threat in threat prevalent ecosystems.   It examines the following two questions: 
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RQ4: Can RF fingerprint evidence augment insider vs. outsider attribution without 

degrading conventional 2-State performance in uncertainty?  

Chapter IV provides a discussion about a well-known interactive trust algorithm employed 

to mitigate known con-man attack patterns.  In such an attack, an interactive trust value (ITV) 

mechanism is employed to assess the level of trust that an authentication receiver has for some 

uplink transmission device.  A series of 200 transactions are considered during the ITV assessment 

and at the end of each transaction, a binary classification of Cooperative or defection is made to 

indicate a trustworthy or untrusted transaction occurrence.  When a classification for Cooperation 

occurs, the ITV value is slightly incremented to indicate a more trusted perspective of the 

transmitting device’s claimed logical credential field.  However, a defective transaction results in 

the loss of trust and a penalty is applied to reduce the ITV.   If the ITV falls below a specified 

threshold of distrust, a Level-3 network treatment response is automatically initiated and uplink 

access for all ground-stations is denied.  The conventional method of transactional classification 

is extended to include four total possible states.  With the introduction of two new states, the 

research seeks to demonstrate the expressiveness of insider and outsider threat using the proposed 

method.     

Finally, in Chapter V, attention is focused on assessing the diagnostic usefulness of 

combined classifier performance against a con-man attack.  A decision to treat a network for 

network-disease is explored using the benchmark, gold standard and diagnostic performance.   

Arbitrary decision-rule thresholds are studied to gain insight into potential cost and benefit trade-

offs using paired credential diagnostic tests.  When diagnostic accuracy fails to meet threshold 

requirements, Bayes Theorem may be applied to improve the posterior estimates.  It examines the 

primary question: 
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RQ5: Are simple random log file screenings of claimed RF-DNA credentials useful in 

indicating earlier warning and preventative treatment options?  What is the minimum 

screening sizes for RF-DNA credentials?  When should treatment be given? 

In summary, this dissertation examines important research questions involving the 

mitigation of unauthorized uplink access attempts and focuses on two primary areas.  One is 

applying its insights from RF fingerprinting into device-specific benchmarking to enable 1-to-1 

verification, which may help to reduce the acceptance of infectious credentials when logical only-

mechanisms fail. The other research focus seeks to identify useful RF-Biomarkers (RF 

measurements selected as useful discrimination features) that best indicate network-disease when 

the origin integrity of claimed logical and physical credential pairings are inconsistent with 

benchmark credential signatures.   
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II. Collection of Non-Standard  RF-DNA Fingerprint Credentials 

Out of clutter, find simplicity.  From discord, find harmony.  In the middle of difficulty lies opportunity.    

(Albert Einstein) 

2.1 Introduction  

The aim of this article is to characterize the integration of RF-measurement collections, as 

RF fingerprints, into a consolidated trust management system (CTMS) architecture for enhanced 

satellite communication (SATCOM) network security [1] [2] [19] [20].  Uplinks are 

communication mediums that ground station devices transmit telecommand messages to satellites 

in space for command and control (C2) of the satellite.  A CubeSat is used as to represent a 

miniaturized SATCOM network and the ICOM-9100 amateur radio represents the ground station 

transceiver [21] [22].  

SATCOM networks in general, can be secured using mechanisms such as encryption, 

ground station authentication IDs and MAC addresses employing logical network layer security 

mechanisms. Such mechanisms are inherently based on digital representation of some transmitted 

payload or content for C2 interpretation, administration, and Cyber security defense.   As more 

access is gained to SATCOM, cyber security vulnerabilities such as interception, replay and 

forgery attacks by imposter devices are expected to increase.  Imposter devices can mimic logical 

(bit-level) content of communications transmitted between SATCOM devices and create 

undesirable network behavior [23].  Imposter devices can include previously trusted or authorized 

devices that may abuse or exceed usage privileges or may be complete anonymous devices that 

have never been seen in the network.  The possession of forged or actual abuse of bit-level 

credentials by persistent imposter entities enables a bypassing of network layer authentication 

mechanisms.   
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The detection of such persistent behavior is made more difficult in a multiple path loss 

ecosystem such as SATCOM links.  A priority of maintaining positive C2 of launched spacecraft 

in spite of noisy EMI ecosystems drives policy to accept a higher risk of misinterpreted bit-level 

credentials to include the acceptance of anonymous devices.  As a result, Cyber Hackers, exploit 

this vulnerability and seek to gain C2 of the spacecraft for their own purposes.  Multiple path loss 

for Ultra High Frequencies (UHF) instead may be ideal for RF fingerprint.   

For UHF, it has been shown that such multiple path loss is not significant and provides a 

reasonable opportunity to assess effects of multiple path loss discrimination of fingerprinted 

devices over long UHF SATCOM links [15].  At the time of this writing, RF-measurement has 

been used for RF communications such as microwave line of sight (LOS) links and is heavily 

researched for various medium types [17] [16] [18] [15]. In recent work, RF fingerprinting 

techniques have been used to discriminate SATCOM devices using GPS.  Such discrimination 

suggests authentication of logically transmitted content (e.g. ITV) enhancements is possible using 

physically (PHY) determined RF fingerprints, which are substantially more difficult to mimic [24]. 

The implications of having network level discrimination of authorized devices has great appeal to 

the Cyber-forensics, network security, Cyber-security and SATCOM community in general [25] 

[26]. However, many of the challenges associated with RF fingerprinting for SATCOM network 

integration have not been adequately addressed, leaving the physical aspects of SATCOM 

transmissions potentially vulnerable to Cyber-attacks such as forgeries as described in Duncan’s 

work [1].   
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Unlike previous research that aims to characterize and extract the RF fingerprint of specific 

devices, this article discusses some EMI considerations that may adversely impact RF 

fingerprinting.  A study of EMI behavior on various RF fingerprint collection configurations could 

inform policy that specifies and ultimately selects statistically significant RF-Measurements of the 

physical attributes associated with logical credential transmissions.  After policy specification, the 

RF-Measurements can be collected as a distribution of distinct values and represent the RF-DNA 

fingerprint credential used to augment the authentication of a logical credential field. Such pairing 

of credentials, paired logical and pathological RF-DNA credentials are exchanged from source to 

destination device for final authentication. Inspiration from medical and biological community 

provide inspiration for exchanging RF-Measurements between devices for the purpose of 

authentication enhancement.  The proposed framework biologically inspired network (BiONet) 

framework proposes an integrated multi-factor authentication scheme which provides policy-

based RF fingerprints selections for dynamic decision-support systems [27] [28].  

 The standardized radio frequency (RF) measurements of invariant transmission fields (e.g. 

Preamble) have been effectively used as discriminating features to reliably differentiate FM radios 

operating in the amateur radio frequency space [18] [11].    This work integrates multi-factor 

concepts of ‘air-monitoring’ used in ZigBee networks and consolidated trust management systems 

(CTMS) architecture.  Specifically, the device discrimination capability is extended to enhance the 

discriminability of specified organization’s assigned network layer payload content.  Ramsey’s 

‘air-monitor’ concept observes physical (analog) wireless network transmissions which augments 

bit-layer security using RF fingerprints in a Wi-Fi wireless intrusion detection ecosystem [29], 

while Duncan’s CTMS’s authentication mechanisms observes logical  content of wireless network 

transmissions to augment upper OSI layers for SATCOM networks [1].   
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The work here demonstrates reliable differentiation between ICOM-9100 transceivers 

functioning as ground station devices for SATCOM uplinks.  The RF fingerprint techniques used 

summary statistics of amplitude, phase and frequency as instantaneous transmission waveform 

components of the transmitted signal of interest.  For an arbitrary benchmark of 70% or better ROI 

classification accuracy, this work shows that reliable PHY-based uplink transceiver discrimination 

can be achieved at ≥SNR 30dB for reduced sized ROI.   

2.2 Trust Management System Enhancements Using RF-measurement  

• 2.2.1  SATCOM Overview. 
SATCOM links are generally described as up and downlink communications channels to 

indicate the direction of information flow with respect to earth.  The uplink channel’s transmission 

signal source originates from a device located on earth and is propagated upward toward a satellite 

away from earth.  This device may exist as a stand-alone RF emitting device or as a collective 

member of several devices operating as a unified system.  The latter is referred to as the ground 

station (GS).  The downlink’s transmission signal originates above the earth’s surface and may 

extend far into space.  The satellite transmits signals downward towards a GS on earth using the 

SATCOM network’s downlink.  When satellites or GS devices communicate directly with each 

other, they form a point to point (P2P) communications network that consists of two transceiver 

devices (source and destination).  The transmitters used in this article utilize a 2.2GHz downlink 

channel to send information to ground stations, while the GS devices transmit on the uplink in the 

UHF 450 MHz range to send tele commands to the satellite’s command data handler (CDH) 

receiver. The CDH controls the execution of tele commands through the use of an onboard 

microcontroller.   
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Upon receipt of a telecommand message the CTMS determines the authenticity of a GS’s 

identity prior to executing the command.  This scheme employs a bit-level credential that is 

digitally encoded within the carrier’s modulated message. 

• 2.2.2  ICOM-9100 Transceiver Modulation Scheme. 
The ICOM-9100 radio is an independent duel receiver that fully covers HF up to 1200MHz 

multiband to include a Satellite mode of operation.  The ICOM-9100 can modulate and demodulate 

multiple schemes including, Gaussian minimum shift keying, frequency shift keying (GMSK), and 

FM among others.  One transceiver modulation scheme of interest was the GMSK used by the 

AX.25 amateur radio protocol [11].   More research is needed to determine the actual front end 

modulation scheme that is transmitted from the ICOM-9100 after intermediate frequencies have 

been modulated using some unknown modulation scheme between the terminal node controller 

and the ICOM-9100. 

• 2.2.3  CubeSat Message Format. 
CubeSat is the representative experimentation network of satellites under study in this 

research effort.  Command sequences are executed by the command data handler (CDH) scheduler 

in order of priority. The CubeSat executes immediate commands with one sequence, one 

command, and corresponding number of parameter blocks according to the scheduler’s storage.   

There are two types of commands supported by the CubeSat. Unacknowledged Commands: 

Protocol id 0x1 and Acknowledged Commands: Protocol id 0x2. If a protocol id 0x2 is sent from 

the command station to the device, the device will send an ACK response back, regardless of the 

operation.  The CubeSat message format is shown in Table 1.  
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Table 1: CubeSat Message Format with Vehicle ID as the ITV 

 

• 2.2.4  Consolidated Trust Management System. 
In Duncan’s previous work, the vehicle ID and a sequence number (SN) mechanism field 

are employed to indicate the current trusted state of a device.   However, this network-layer 

mechanism may be intercepted by a foreign device during a suspected forgery attack.  Possessing 

the next expected SN; a malicious user could insert malicious code that may be executed by the 

receiving station.   The CTMS compares the vehicle ID and message SNs to make an authentication 

decision using a dynamic interactive trust value (ITV).  When matched, the telecommand sequence 

is allowed to execute.  However, when an imposter device is successful with returning the vehicle 

ID and the correct SN, then the forgery attack has a higher rate of success.  Using RF fingerprinting 

results, the aim is to integrate the physical characteristics of authorized SATCOM devices such 

that forged tele commands fail to execute because it lacks the unique RF-measurement components 

of authorized devices.  As shown, an imposter ground station may gain unauthorized access to 

satellite S4 during a successful uplink replay attack.  Likewise, an imposter satellite (S?) can be 

manipulated by malicious users who provide modified information over the downlink.  Having a 

CTMS properly functioning onboard both the GS and the satellite can offer augmented protection 

against this type of attack in a distributed system configuration. 
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Figure 1.  Imposter Threat Model for Unauthorized Link Access   
 

    If S4 or R2 have no way of discriminating the physically inherent waveform features of 

imposter devices then the forgery attack may be successful and result in catastrophic consequences 

such as total loss of spacecraft C2.   To mitigate C2 loss, a method to integrate the concepts of RF 

fingerprinting and CTMS authentication process is introduced in the next section. 

• 2.2.5   Physical & Logical Trust Management Integration. 
A policy-based BiONet concept may be employed as an integrated multi-factor mechanism 

for network security enhancement  by simply adding the concept of ‘we’ adapted from an ‘air-

monitoring’ scheme which lends itself to added expressiveness of policy-based paired 

communications that is proposed in this article [14] [24].  Ramsey’s three factors becomes 

modified to be; 1.) “Something we have” (ITV – Interaction Trust Value). 2.) “Something we are” 

(PHY – RF fingerprint) simplex. 3.)  “Something we share”     (PHY – RF fingerprint marker 

pairing) up to full-duplex.  An integrated BiONet framework would be most valuable if every 

received transmission’s content is validated by some policy-based physical RF marker.   
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Since it only takes the acceptance of the content from a single malicious transmission, RF-

measurement fractionally validated transmissions may mitigate attacks such as replay and denial 

of service attacks. The use of the ICOM-9100 transceiver’s fixed preamble makes it an early 

candidate for fractional RF fingerprinting and policy-based RF-measurement exchange 

mechanism for CTMS security enhancement. 

In Figure 2, the imposter threat model is presented with unauthorized link access protection 

mechanisms.  Using the CTMS architecture, RF fingerprints are exchanged between trusted 

devices to augment the network-layer authentication mechanism for link access.  A device that 

employs the augmented CTMS architecture is indicated in the blue label.  On the far left of, S4’s 

response policy is shown to describe actions taken when comparing a received RF fingerprint to a 

known RF-measurement marker.  If S4’s extracted RF fingerprint matches its credentials, the 

identity of the waveform’s source is authenticated.  Imposter devices (red) attempting to access 

SATCOM links using forged waveform carriers may be denied access using this physical-layer 

augmentation scheme.  As depicted in Figure 2, if S4 or R2 lacks a defined Bio-Pairing policy 𝒑𝒑 

that consists of shared RF-measurement markers of the imposter transmitter, authentication 

attempts may fail. 

2.3 ROI Selection Methodology 

An ETTUS USRP X310 software defined radio serves as the RF Signal Intercept 

Collection System (RFSICS) [30]. Raw collected signals are stored initially as complex in-phase 

and quadrature (I-Q) components for subsequent post-processing.  Secondly, each set of (I-Q) data 

is decimated by a factor of four and down converted to near-baseband using a 12-bit analog-digital 

conversion.  Collection parameters include sample rate of frequency fs = 5 MS/s and baseband 

filter bandwidth WBB = 20 KHz using a 4th-order Butterworth filter.  A total of NP = 971 
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transmission bursts produced approximately 1800000 samples per burst from ND = 4 ICOM-9100 

450MHz radio transceiver devices.  Transceiver positioning is consistent in a given transmission 

circuits.   In this case, collections were made using a wired (shielded cable) circuit between the 

RFSICS and ground station transceiver (i.e. ICOM-9100) device. Amplitude-based threshold 

detection with a leading edge value of TD = -6.0 dB is used to identify and extract individual burst 

transmissions from the multi-second RF collections.  The collection SNR for all bursts was SNRC 

> 18 dB.  Each burst was approximately 350ms in duration. 

 

Figure 2.  Imposter Access Mitigation using RF fingerprints 

• 2.3.1  Statistical Fingerprint Generation 
The statistical fingerprints 𝑭𝑭 for a signal is derived using Reising’s and Ramsey’s 

computations and are summarized here.  The components of its instantaneous amplitude (a), 

phase (ϕ) and/or frequency (f) characteristics are used to derive F.  More specifically, the 

sequences {a[n]}, {ϕ[n]}, and/or {f[n]} are generated from (I-Q) samples of the signal ROI, 

centered (mean removal) and then normalized (division by maximum value).  Within specified 

signal ROI, statistical features are generated as variance (σ2), skewness (γ), and/or kurtosis (k).  

CTMS Decision Point:
Hold Signal for Processing 
Forgery_Blocker(Sample){
Compare Sample
If Fingerprint is Acceptable,   
     Forward CMD SEQ; 
  else Log and Reject
}
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The specified signal ROIs are used to generate the RF fingerprint markers in three steps.  

First, each characteristic sequence is divided into NR contiguous, equal length sub-sequence 

regions or sub regions.  Secondly, NS statistical metrics are computed for each sub region, plus the 

entire fingerprinted region. Finally, the (NR + 1 total region) are arranged in the vector:  

𝐹𝐹𝑅𝑅𝑅𝑅 =  [𝜎𝜎2𝑅𝑅𝑅𝑅 𝛾𝛾𝑅𝑅𝑅𝑅  𝑘𝑘𝑅𝑅𝑅𝑅]1 ×  3 ,                                           (1) 

Where i = 1, 2… NR + 1.  The marker vector from (1) is concatenated to form the composite 

characteristic vector for each characteristic and is given by 

             𝑭𝑭𝑅𝑅 =  [𝐹𝐹𝑅𝑅1 ⁞ 𝐹𝐹𝑅𝑅2 ⁞ 𝐹𝐹𝑅𝑅3 …  𝐹𝐹𝑅𝑅 (𝑒𝑒𝑅𝑅 + 1)]1 ×  𝑒𝑒𝑆𝑆 (𝑒𝑒𝑅𝑅 + 1) .               (2) 

 If only one signal characteristic (a, ϕ, or f), is used the expression in (2) represents the final 

fingerprint used for classification.  When all NC = 3 signal characteristics are used, the final RF 

fingerprint is generated by concatenating vectors from (2) according to 

     𝑭𝑭 =  [𝑭𝑭𝑎𝑎 ⁞ 𝑭𝑭𝜙𝜙 ⁞ 𝑭𝑭𝑓𝑓]1 ×  𝑒𝑒𝑆𝑆(𝑒𝑒𝑅𝑅 + 1)  ×  𝑒𝑒𝑅𝑅.                               (3) 

No exploratory data analysis was conducted, and the chosen NR = 10 ROI sub-regions may 

not be optimal for the selected ROI. More information can be found on optimizing RF-DNA 

fingerprint generation in [5].    

• 2.3.2  Customized ROI Selection  
Adding to the ROI selection process, we further segment the initial waveform into various 

segments that vary in length, duration and ROI start and stop positions.  Using this approach, the 

initial ROI is segmented into six subsets to formulate distinct RF-measurement models from the 

original model M.  In general, there is no need to have a previously existing model 𝒊𝒊, since this 

can be created for one or multiple models according to some arbitrary criteria. We experimentally 

chose a known model where classification results exceed an arbitrary 85% classification rate for 

SNR > 15dB.   
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Let 𝒊𝒊 = the classification model developed using MDAML per AFIT’s RF-DNA 

fingerprinting process as described in the previous section. Each constituent device is therefore a 

trusted member of model 𝑀𝑀 where the population size of M  ≥  3 in this article is given by 𝑒𝑒𝑒𝑒𝐷𝐷 =

{1,2,3, …𝑑𝑑}.  Given an arbitrary ROI segmentation strategy of six conditions, M is segmented into 

six distinct ROI selections. 

The collection of FC1 through FC6 fingerprints produced six variations of the original model 

as 𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,𝒊𝒊𝟑𝟑,𝒊𝒊𝟒𝟒,𝒊𝒊𝟓𝟓,𝒊𝒊𝟔𝟔. These collections of fingerprinted models form the pool of RF-

measurement markers for model development and are extracted from each device’s decimated (I-

Q) data. Each 𝒊𝒊𝒊𝒊 is mapped to a specific 𝑹𝑹𝑶𝑶𝑹𝑹𝒊𝒊 as (𝑹𝑹𝟏𝟏,𝑹𝑹𝟐𝟐,𝑹𝑹𝟑𝟑,𝑹𝑹𝟒𝟒,𝑹𝑹𝟓𝟓 and 𝑹𝑹𝟔𝟔). The total sample 

size, start/stop parameters, and the percent of the original 𝒊𝒊 reduction in total sample size are 

provided in Table 2.  𝑹𝑹𝟏𝟏 is the original model 𝒊𝒊, and contains 30,000 samples. 𝑹𝑹𝟐𝟐 and 𝑹𝑹𝟑𝟑 contain 

the same start point for ROI model selection as 𝑹𝑹𝟏𝟏, whereas 𝑹𝑹𝟓𝟓 and 𝑹𝑹𝟔𝟔 share the same sampling 

stop point as 𝑹𝑹𝟏𝟏.  𝑹𝑹𝟒𝟒 contains 10,000 samples and represents the middle third of 𝑹𝑹𝟏𝟏 and represents 

a 66% decrease in overall 𝑹𝑹𝑶𝑶𝑹𝑹 sample size that does not share the same start nor stop points. 

• 2.3.3  MDA/ML Device Classification Methodology 
Statistical RF fingerprints are generated using (3) for collected transmissions from 

𝑵𝑵𝑶𝑶 =  4 ICOM-9100 UHF radio transceivers.  The fingerprint results are classified using Multiple 

Discriminant Analysis/Maximum Likelihood (MDA/ML) [31], an extension of Fisher’s Linear 

Discriminant.    For the 𝑵𝑵𝒄𝒄 =  4 class problems considered here, MDA/ML projects the 

multidimensional RF fingerprints into a 3-dimentional space for a total of  𝑵𝑵𝒄𝒄 classes and assigned 

for each fingerprint marker.  K-fold cross-validation with K = 5 is used to improve classification 

reliability.  The best-performing model generated is then used to classify a set of half of the total 

bursts or 485 custom fingerprint markers previously unseen.     
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• 2.3.4  Pre-Classification Feature Dimensionality Reduction 
The MDA/ML classification process does not provide feature relevance statistics for 𝒊𝒊 

however, RF fingerprint components that exhibit maximal inter-device dissimilarity and minimal 

intra-device dissimilarity are generally advantageous for MDA/ML classification. In this case, the 

ICOM-9100 devices exhibit such dissimilarity. The process for assessing feature relevance is 

called Dimensional Reduction Analysis (DRA) and aims to reduce RF fingerprint size (minimize 

𝑵𝑵𝑭𝑭) and minimal or tolerable impact on classification accuracy.  For the ND = 4 device case 

considered here, the full dimensional fingerprints were calculated to contain   𝑵𝑵𝑭𝑭 =

(𝑵𝑵𝑹𝑹 + 𝟏𝟏 = 𝟏𝟏𝟏𝟏) ∗ (𝑵𝑵𝑺𝑺 = 𝟑𝟑) ∗ (𝑵𝑵𝑪𝑪 = 𝟑𝟑) = 𝟗𝟗𝟗𝟗 features.  

Where amplitude features are considered in the first 33 features, phase occupies the second 

33 features and frequency is used to assess the frequency features of the fingerprint.  Amplitude 

appears to dominate in this article and was normalized to further differentiate feature relevance.  

Phase features have been previously noted [14] to be robust despite noisy conditions and are shown 

to remain virtually unchanged as SNR degrades in general.   

2.4 ROI Classification Results 

The results are presented here using previous work presentations as a template for results 

comparison. Specific values and parameter settings have been adjusted to reflect these 

experimental findings.  Analysis revealed that features based on power-spectral-density 

underperformed relative to features based on the instantaneous a, ϕ, and f time-domain responses. 

MDA/ML inter-device classification results were generated for all 4-class problems using 

𝑵𝑵𝑶𝑶 =  4 ICOM-9100 devices.  Classification experiments used 𝑵𝑵𝑷𝑷 =  𝟗𝟗𝟗𝟗𝟏𝟏 valid independent 

preamble pulses (485 each for training and 486 for model classification) and 𝑒𝑒𝑧𝑧 =  1 Monte Carlo 

noise realizations per pulse response at each SNR ranging from 0 to 35 in 5dB steps.  
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𝑵𝑵𝑻𝑻𝒘𝒘𝑶𝑶 =  (𝟒𝟒𝟒𝟒𝟔𝟔 𝑪𝑪𝑪𝑪𝒘𝒘𝑶𝑶𝑪𝑪𝑪𝑪𝑹𝑹𝑶𝑶𝑹𝑹) 𝑻𝑻 (𝑵𝑵𝒛𝒛 =  𝟏𝟏) =  𝟒𝟒𝟒𝟒𝟔𝟔 independent classification decisions are 

made for each device 𝑵𝑵𝑶𝑶 trial.  

Table 2. Custom ROI Start and Stop (I-Q) Waveform Sampling 
ROI ID Size Reduction 

(%) 
Region of Interest  Index Marker [Start : Stop] Samples 

*R1 0 25K : 55K 30000 

R2 -66.7 25K : 35K   10000 

R3 -33.3 25K : 45K  20000 

R4 -66.7  35K : 45K  10000 

R5 -33.3  35K : 55K 20000 

R6 -66.7   45K : 55K 10000 

*R1 represents the baseline ROI of an experimentally determined GMSK waveform.   
 

• 2.4.1  Full Dimensional RF fingerprinting Accuracy. 
Full dimensional RF fingerprints include features based on 𝑵𝑵𝒄𝒄 = 𝟑𝟑 signal characteristics 

(a, ϕ, and f), 𝑵𝑵𝒘𝒘 = 𝟑𝟑 statistical fingerprint features (σ2, γ, and k), and 𝑵𝑵𝒊𝒊 + 𝟏𝟏 = 𝟏𝟏𝟏𝟏 regions, for a 

total fingerprint 𝑭𝑭 comprised of 𝑵𝑵𝑭𝑭 = 𝟗𝟗𝟗𝟗 RF-measurement features as given by (3).  Figure 3 

presents the aggregate full dimensional classification accuracies for all device permutations at 

SNR ∈ [0 35] dB levels.  The cross-permutation average is shown as the filled asterisk marker 

connected with black dashed lines of Figure 3.  As indicated, the mean classification accuracy 

exceeds an arbitrary benchmark of 70% for SNR ≥ 30 dB. This suggests that that the varied ROI 

selections display similar classification performance and increases as the SNR increases in general 

for full 99 feature consideration.  Implication of less processing of a waveform can achieve similar 

RF-measurement detection accuracy and lower the overall cost. 

• 2.4.2  Reduced Dimensional RF fingerprinting Accuracy. 
While full dimensional RF fingerprinting is effective, the DRA process in Section III.D 

revealed significant differences (range of p-values) among RF fingerprint components derived 

from the instantaneous {a[n]}, {ϕ[n]}, and {f[n]} sequences.  Classification results are presented 

here for RF fingerprinting with a 66.7% reduced feature set (𝑵𝑵𝑭𝑭 =  𝟑𝟑𝟑𝟑).   
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This is done by evaluating classification performance using only amplitude (Amp-Only), phase 

(PHz-Only) and frequency (Frq-Only) feature subsets of the full dimensional feature set. 

Figure 4 presents the aggregate Amp-Only classification accuracies for all NPrm = 24 

permutations, with the cross-perm average shown with filled asterisk markers.  The resulting 

decline in classification performance is readily apparent by visual comparison with full 

dimensional RF fingerprint performance using normalization.  Relative to the arbitrary benchmark 

of 70%, Amp-Only 33 features, RF fingerprinting requires SNR > 25 dB. 

Figure 5 presents the aggregate classification accuracies for all 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃 =  24 permutations 

for Frq-Only RF fingerprinting, with the cross-perm average shown with filled circle markers.  In 

general, the frequency performance results show no significant change from 𝑹𝑹𝟏𝟏 from 0 to 20 dB, 

but at SNR > 25dB 𝑹𝑹𝟒𝟒, 𝑹𝑹𝟓𝟓 and 𝑹𝑹𝟔𝟔 performs marginally better than random.  In all cases, neither 

frequency-only  feature meet the arbitrarily chosen benchmark of 70% at any SNR, which suggests 

that Frequency may not be the best discriminator for ICOM-9100 devices in this experiment. 

Figure 6 presents the aggregate classification accuracies for all NPrm = 24 permutations for 

PHz-Only RF fingerprinting, with the cross-perm average shown with filled asterisk markers.  

These results show a significant decrease in classification performance when compared to the 

Amp-Only features depicted in Figure 4.  These findings are not consistent with previous RF 

fingerprinting work using similar devices.  The shielded cable configuration may play a factor in 

this inconsistency; since previous work used free space configurations.   PHz-Only fingerprinting 

failed to meet the arbitrary benchmark of 70% for any SNR value used in this simulation.  

Consistencies are shown that suggest phase remains unchanged despite decreasing SNR.  𝑹𝑹𝟒𝟒 has 

10,000 samples compared to 𝑹𝑹𝟓𝟓’s 20,000 sample size and still achieves a classification accuracy 

that is 10% lower than 𝑹𝑹𝟏𝟏, 𝑹𝑹𝟐𝟐, 𝑹𝑹𝟑𝟑 and 𝑹𝑹𝟓𝟓.    
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Although the same start point for the ROI selections for 𝑹𝑹𝟒𝟒, 𝑹𝑹𝟓𝟓 and 𝑹𝑹𝟔𝟔 differ, there is no 

significant difference in RF-measurement classification accuracy, however the sample size of only 

10,000 vs. 𝑹𝑹𝟓𝟓’s 20,000 samples provides evidence that a savings in processing and ROI location 

can be achieved using custom ROI selections with minimum effect on detection accuracy.  𝑹𝑹𝟐𝟐, 

which has a sample size equal to 𝑹𝑹𝟒𝟒 and 𝑹𝑹𝟔𝟔 =  10,000 samples supports that the sample size is 

not the only factor, but achieves higher performance since it shares the same start point, which 

may be closer to the fixed preamble area. 

 

Figure 3. Full Dimensional (NF = 99) Class Accuracy for 24 Permutations 
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Figure 4. Reduced Dimensional (NF = 33) Class for 24 Permutations (Amp-Only) 

 

 

 

Figure 5. Reduced Dimensional (NF = 33) Class for 24 Permutations (Frq-Only) 
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Conclusions relative to results in Figure 3 through Figure 6 are visualized using the average 

performance plots presented in Figure 7 which shows full dimensional and reduced dimensional 

MDA/ML accuracy averages across all six ROI models for SNR ∈ [0 35] dB.  Considering an 

arbitrary classification accuracy of 70% as a reasonable benchmark for assessing the potential 

contribution of RF fingerprint features to an overall multi-factor authentication solution, both the 

full dimensional (𝑒𝑒𝐹𝐹 =  99) and Amp-Only (𝑒𝑒𝐹𝐹 =  33) feature sets would perform reliably for 

SNR ≥ 25 dB.  However, the reduced dimensional Amp-Only feature set has the added advantage 

of only requiring calculation and processing of only one-third the number of features and remains 

steady in performance for SNR > 10 dB.  This steady performance however, meets or exceeds the 

arbitrary benchmark of 70% classification using the amplitude only features for SNR>20dB.   

 

Figure 6. Reduced Dimensional (NF = 33) Class for 24 Permutations (PHz-Only) 
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Figure 7. Full Dimensional and Reduced Dimensional MDA/ML Class Averages. 

2.5 Conclusion and Future Recommendations 
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become reliant on well- known amateur radio solutions as a first flexible and cost effective option 

that comes with trust in the operational integrity of their ground stations, satellites and intermediate 

transceivers. Moving to cost-effective software defined radio options may be less costly for entry; 

however these devices cannot perform as a stand-alone ground station transmission circuit.  This 

implies that the circuit for RF fingerprinting should have configuration and construction 

standardization for consistent performance.  As the demand for access to SATCOM increase, so 

does the potential for Cyber-attacks.  To mitigate imposter device behavior on specified SATCOM 

network boundaries, the use of physical or bit-level mechanisms are needed to enhance network 

or logical level device authentication.  Results here demonstrate that customized ROI can be 

identified given an arbitrary threshold solely by using time-domain RF-measurement statistical 
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An arbitrary benchmark of 70% classification accuracy was demonstrated for SNR ≥ 35 dB 

using like-model ICOM-9100 devices for all reduced fingerprint marker sizes and achieves over 

90% classification accuracy using 𝑹𝑹𝟑𝟑 as a 33% reduced portion of a standard preamble.  The work 

here builds upon the foundational work that has been previously conducted using RF fingerprints, 

dimensionality reduction and enhances the cross-layer PHY-MAC-NWK multi-factor 

authentication framework for air monitoring and trust management systems.    The results imply 

that custom ROIs are achievable and feasible for both cost savings and performance.  A bit-level 

field should be further investigated to see if ROI such fields can be efficiently identified using 

custom start and stop points such as 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒘𝒘.  Such a mechanism could be provided in a TDMA or 

FDMA scheme.  A logical field should include a telecommand field for an authorized set of 

CubeSat satellite command and controls. 

Finally, a custom ROI selection scheme should be developed to provide dynamic decision-

support capability for telecommand sequence authentication and expressive network security 

augmentation.   As a next step, such a scheme should focus on the CubeSat’s Interactive Trust 

Value (ITV) section of a message’s payload. Collections using a free-space circuit should be 

conducted using eight or more radios in a grounded anechoic chamber.   
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III. Statistical Prediction and Classification of Electronic Network-Disease  

“The good physician treats the disease; the great physician treats the patient who has the disease.”  (William Osler) 

3.1 Overview 

Conventional network diagnostic accuracy studies are difficult to design for maintaining 

the health of radio frequency (RF) networks due to a lack of a common reference or common 

operational picture.  A common reference, in practice, is used to assess the intrinsic accuracy and 

posterior usefulness of diagnostic utility tests.   Here, a 1-to-1 verification scheme employs Bayes 

Theorem [32] to compare the specified RF-measurements of new transmission claims against 

known RF-DNA credential benchmarks (signatures) when initial diagnostic results are uncertain. 

The priori diagnostic test provides the likelihood that the RF origin integrity claims of an uplink 

access request will be truly infectious (unacceptable RF origin similarity) or benign (acceptable 

RF origin similarity) if accepted for further processing by a receiving device.    The proposed 

method selects the highest priori accuracy among binary, ordinal and continuous valued threshold 

classifiers to improve posterior prediction accuracy of logical-only authentication mechanisms.   

Processing messages containing infectious RF credentials may lead to abnormal network behavior 

called electronic network-disease (eND).  The proposed framework for diagnostic testing 

improves posterior classification accuracy from 32.32% to 100% accuracy among tested samples 

using a benchmark of 1100 previous RF fingerprint observances.  The top distributed denial of 

service (DDoS) motivation reported among service providers in the enterprise, government and 

education segment is criminal extortion attacks. Wireless RF networks are often the target of such 

attacks where the origin integrity (authentication) vulnerabilities exist at the physical and 

application layer of the OSI model [33].  
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Conventionally, logical (bit-level) authentication mechanisms are considered in mitigating 

RF-based attacks by inspecting, classifying and logging suspicious RF communication 

transactions.    However, conventional diagnostic accuracy studies of an RF receiver’s log files are 

difficult to design for RF networks that rely on standard RF modulation schemes and interoperable 

identification fields.  Such schemes and identification fields can be mimicked by software defined 

radio (SDR) devices.  In a threat prevalent ecosystem, RF interception and replay attacks can be 

employed in efforts to bypass logical authentication schemes and cause a loss of critical network 

resource availability.  Such loss may result from the acceptance of network access credentials 

originating from unauthorized RF transmission sources that contain bit-level credential forgeries.  

Trust is a problem in uncertain threat prevalent monitoring ecosystem with high-authority 

automation, resulting in an operator who believes the automation is 100% accurate and “re-thinks” 

their need to rely on other independent decision-support cues that would otherwise indicate 

abnormal electronic device behavior [34].  Additionally, as more electronic devices are 

incorporated as integral human support devices, a Cyber Operator’s reliance on conventional 

intrusion detection systems (IDS) during network security monitoring lacks a capability to provide 

physical RF-DNA origin integrity evidence [35] [36]. A consideration of physical RF attributes, 

while maintaining network health, may offer early warning against abnormal behavior in electronic 

networks.  Moreover, as the widespread use of implantable medical devices (IMDs) used to treat 

medical conditions increase, so does the need to ensure privacy of data and prevention of 

unauthorized modification of the IMDs, causing abnormal behavior in the human subject [37].    

Unfortunately, specification-based intrusion detection for wireless IMDs assumes that 

identification and authentication information cannot be forged [38] which is no longer valid in 

current threat prevalent cyber ecosystems.   
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A causation of abnormal electronic device behavior suspected of originating from 

infectious transmissions is called electronic network-disease (eND).  For electronic patients (node 

device), RF-measurements of native attributes enable the diagnosis of origin integrity attribution 

in uncertainty. In this article, a Bayesian-based RF fingerprint filter applies a 1-to-1 credential 

verification mechanism that compares newly claimed RF signature origins to a known benchmark 

or gold standard [39].  The individual component features of a composite RF fingerprint are used 

to verify the origin integrity of RF-Event claims.  Our research aims to provide insight into the 

usefulness of origin integrity verification using RF fingerprints.  We explore pre-test (priori) and 

post-test (posterior) probability classifications of dichotomous RF-Events 𝑇𝑇 and 𝐵𝐵, using 

examples from an arbitrary labeled dataset of infectious (𝐵𝐵) and benign (𝑇𝑇) transmission sources.  

That is, RF-Events originating from 𝑇𝑇 are arbitrarily selected as trusted, while RF transmissions 

originating from 𝐵𝐵 are electronic forgeries and are untrusted.  Bayes’ Theorem applies conditional 

probability to find the posterior estimation that a claimed RF-Event is truly benign (a benchmark 

match) given a benign diagnostic test result. 

3.2 Background & Related Works 

• 3.2.1 Electronic Network-disease mitigation  
Biomarkers are defined as [40] [41] “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic 

response to therapeutic intervention.”    Biomarkers assist in the evaluation of distinct physical or 

natural attributes that are inherent in patients, such as distinct native attributes (DNA).  An RF-

Biomarker is a physical or intrinsic characteristic of an electronic communication device’s RF 

emissions that indicates abnormal process or response when the origin integrity of RF 

transmissions are suspect for causing network-disease.   
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It is objectively measured and evaluated to differentiate benign (normal) versus infectious 

(abnormal) electrical RF transmission receipts.  RF-biomarker analysis aims to lend further insight 

into the etiology of a specified network abnormality referred to as network-disease (e.g. loss of 

link access availability) when observed levels are inconsistent.  Objective RF-Biomarker 

measurement levels reveal distinct attributes of fixed-circuit emissions of normal transmission 

processes.  As such, a useful RF-Biomarker is distinguishable from other RF-measurement 

features that do not provide statistically significant decision-support assistance in credential 

verification. 

To reduce uncertainty of a digitally claimed (logical) credential’s authenticity, a receiver-

specific diagnostic test (treatment) considers RF-biomarkers (indicators) to augment the validation 

of  logical credential claims.  AN RF-biomarker has a minimum of three major parts; a population 

of independent RF-measurements as observed by a common RF collection (receiver) device, the 

statistical distribution of each RF-measurement, a policy specified tolerance region threshold to 

indicate RF origin similarity acceptance or rejection. All components of RF-Biomarkers should 

contribute to the aim of indicating early warning detection of eND.  RF-biomarkers indicate the 

true origin of 𝑤𝑤𝑠𝑠 given some decision-support tolerance threshold indicated as 𝑑𝑑𝑇𝑇.  RF-biomarker 

similarity diagnostic results are not a true representation of a received RF-Event’s true condition; 

rather it is a representation of how likely the classified condition is, given a known population and 

threat prevalence rate [42]. 

For each RF-biomarker, a statistical RF measurement is taken from the full-wave’s real 

and imaginary parts to include any sub-ROI’s real and imaginary parts.  This vector of RF-

measurements comprises values of independent receiver observations of specified RF-Events.  The 

stored signature of an RF signature contains a distribution of trained observations of 𝑤𝑤𝑠𝑠.  
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Using the distribution of each 𝑇𝑇𝑅𝑅𝑠𝑠 device, the probability density function (PDF) can be 

estimated.  The exact equation employed to conduct an RF measurement is represented in this 

article as ( ⋆𝑃𝑃)  where the mth measurement is consistently assessed across a fixed time/space of 

a received RF-Event.  As shown in Table 1, the PDF has been stored for �⃑�𝑅𝑖𝑖’s full and sub ROI 

values for 𝑒𝑒 independent 𝑤𝑤𝑠𝑠 observations by 𝑅𝑅𝑅𝑅𝑑𝑑.  While, all RF-biomarkers of composite RF 

signatures may not be necessary for accurate comparison, a single indicator alone may not be 

sufficient for some policy specifications.   

This article aims to find the least amount of RF-biomarkers necessary to make appropriate 

network treatment responses in support of policy while minimizing the acceptance of infectious 

forgery or impersonation attacks.  To support policy 𝑝𝑝𝑖𝑖, a decision rule is consulted for 

authentication validation support.     

 

Figure 8.  A Diagnostic RF Origin Similarity Test Visualization. 
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For each 𝑐𝑐𝑘𝑘BIN, we extract a complex valued RF-Event’s signature fingerprint from a 

specified ROI designated by the rth region of a claimed RF-Event 𝑤𝑤𝑖𝑖.  The mth ⋆ measurement of 

r is used to compute the RF-measurement statistics.  Since we assume that each 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 is physically 

distinct during the generation of 𝑤𝑤𝑠𝑠, we obtain trusted physical credentials �𝑐𝑐𝑘𝑘PHY�for a given 𝑐𝑐𝑘𝑘BIN, 

using RF-measurement  ⋆𝑃𝑃 to extract RF-Event signatures from 𝒘𝒘𝒘𝒘 as observable by a designated 

authenticator 𝑅𝑅𝑅𝑅𝑑𝑑.  Notice, the  ⋆𝑃𝑃 measurement occurs prior to demodulation of 𝒘𝒘𝒘𝒘, but may be 

conducted in parallel to reveal the contents of 𝑚𝑚 after demodulation. 

Ahmad (2016) employs an RF-based “biodetection” platform to detect various viruses 

without using conventional biomarkers.  This research suggests an increase in integrating 

biometrics, biomarker deoxyribonucleic acid (DNA) and RF-DNA fingerprinting terms when 

identifying humans and machines [43].  At the time of this writing, there was no previous 

utilization of the term “RF-Biomarker”.  The research contributes a standard naming convention 

for electronic fingerprinting and treatment recommendations against specific network 

abnormalities which are suspected to originate from the acceptance of unauthorized RF credentials. 

For a particular RF-Biomarker (𝑏𝑏𝑘𝑘), the pre-test probability that an acceptable tolerance level of 

similarity for 𝑏𝑏𝑘𝑘appears in an infectious message is estimated by determining the proportion of 

acceptable 𝑏𝑏𝑘𝑘 appearances in known benign RF-Event distributions (0% threat prevalence) versus 

a distribution of all infectious message states (100% threat prevalence).   

Bayes Theorem applies conditional probability to estimate the likelihood of occurrence of 

some RF-Event 𝐵𝐵 that has a probability of occurrence greater than 0% [44, p. 20]. Let non-disjoint 

events 𝑇𝑇 and 𝐵𝐵 comprise the entire sample space, 𝑆𝑆, and the probability of event 𝐵𝐵 is greater than 

zero.   
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The conditional probability that event 𝑇𝑇 occurs given that event 𝐵𝐵 occurred is given by 

𝑃𝑃(𝑇𝑇|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝑇𝑇)
𝑃𝑃(𝐵𝐵) .                                                                   (1) 

In Biometrics, an estimated 150 standardized indicators [9] called minutia details are used 

in human fingerprinting techniques.  Unfortunately, there is no established number of standardized 

electronic fingerprint indicators or terminology (i.e. radio frequency fingerprints). Inspired by 

electronic defense mechanisms against spam and [32] junk email [45] along with authorized 

wireless uplink access using authentication mechanisms, RF fingerprinting mechanisms are 

explored to further augment network security.  Passive radio frequency (RF) transmitter 

fingerprinting techniques were used in the mid-90’s [18].  Shortly thereafter, unintentional RF 

emissions were collected from electronic devices, including network interface cards, to 

discriminate between anomalous behavior [4] [46].  

In 1994, Koopman et al., discussed cryptographic methods to authentication transmissions 

messages using pseudorandom numbers in [47] [48]. DeJean (2007) uses RF-DNA distinct phase 

characteristic-based certificates of authenticity (COA) to augment radio frequency identification 

(RFID) verification systems by incorporating physical RF attributes into a cryptographic 

authentication scheme [49].  Currently, RF “distinct native attribute” (RF-DNA) fingerprinting 

classifies physically distinct RF transmissions based on standardized invariant preamble fields of 

a message.  Invariant fields provide inherent physical characteristic permanence of a composite 

RF-DNA fingerprint’s feature-set.  Such a set includes normal distribution of specified RF-

measurements of an invariant field for each feature.  In RF-DNA fingerprinting, measurements of 

the main RF characteristics include the instantaneous amplitude, frequency and phase.   
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The start and stop time of invariant region of interest (ROI) fields indicate the time-series 

target of RF signature collection.  The central moments (skewness, kurtosis, standard deviation 

and variance) of each main characteristic may also be considered in the composite fingerprint [50] 

[24] [51] [52].  Reising and Kuciapinski discovered methods to analyze classification parameters, 

which reduce the composite feature-set’s dimensionality [52] [53].  Fingerprint verification of a 

specified person among all other people in society is conceptually similar to verifying the 

electronic RF signature of a specific network device from all other devices in its class. In each 

case, multiple biological details such as age, sex, gender and ethnicity may exist among people to 

indicate the true fingerprint origin.  In electronic devices, digital (electronic) details such an IP 

address, FCC-ID, and MAC address indicates electronic transmission identification fields.   

However, such identification fields are logically encoded, which are vulnerable to forgeries 

by a capable device such as a software defined radio (SDR) origins.  There are various modalities 

to automate fingerprint authentication and verification of fingerprint details [9].  The minutia detail 

classification across composite fingerprint features may suffer from poor detail (feature) selection 

when new samples are compared to database templates [54].  Additional methods have been used 

to automate the discovery of indicators termed “biometrics” in the medical community. Biometrics 

analyze the quantifiable minutia details to identify people in information systems [55], while 

regional or localization techniques are employed in electronic networks to capture physical RF 

features (minutia details) to identify a specific transmission device.  During network security 

monitoring, the visualization of decision-support cues is often employed to assist in enhancing the 

situation awareness (SA) [56] of Cyber Operators and overall decision-making process to maintain 

the health of communication networks. 
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• 3.2.2 Visualization of  Decision-Support Cues  
Visualization of benchmark similarity decision-support cues should aim at providing 

appropriate recommendations to Cyber defenders for accurate response.  After detection the 

physical RF-Event’s occurrence, the RF signal’s demodulated logical bits are decoded into binary 

‘1s’ and ‘0s’ in a specified message format.  The ROI associated with the RF signature is examined 

by aligning the decoded message with the encoding format and compare the invariant credential 

field’s binary values.  When the logical (bits) credentials match, the binary fields are logically 

equivalent.  Next, while the demodulation and decoding occurs, the receiving device samples the 

incoming RF-Event and extracts the specified RF-measurements over the specified time-series 

ROI.  The RF-measurements are then used to represent the physical attributes that are generated 

by the distinct transmitter while generating RF emissions from a fixed transmission circuit state.  

The aim of this step is to identify those RF-measurements, when compared against similar 

devices, reveal statistical distinctness of fixed RF origins.  Network diagnostics are more useful 

when a significant RF-measurement difference exists between known and new RF-Events.  

• 3.2.3 Characteristics of Useful RF-Biomarker Selection 
Following the practice of the medical community, useful criteria assist the decision to treat 

networks using network-based diagnostic testing.  This section discusses criteria to evaluate the 

potential usefulness of diagnostic features.  Key players (e.g. Cyber Operators, network 

administrators, resource owners and policy makers) may consider the adoption of RF-biomarker 

diagnostic testing capability in two specific areas.    

First, RF-biomarker candidate screening of log files may determine if infectious RF-Events 

are suspected of unauthorized access attempts given a known threat prevalence and vulnerability. 

If diagnostic screening is positive for suspicion of infection from a known threat, further tests may 

be necessary to treat or prevent the occurrence of a specified network-disease.  
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Examples of treatment, may include a comprehensive distributed system of RF-biomarker 

sensor networks with updatable signatures.   Table 3 lists situations where diagnostic testing may 

be beneficial.  Consider diagnostic testing of RF-biomarkers when the risk of network-disease 

perception is serious in nature.  In addition, the risk of an infectious RF source should be prevalent 

among similar networks to support increased threat prevalent rate.  A finding of infectious 

evidence (significant dissimilarity) should be treatable in a wireless RF networking ecosystem.  

Tests should be minimally invasive to RF circuits and should not harm the communication 

functionality of the receiver (observer). Finally, a diagnostic test should be accurate in its 

classification of benign and infectious RF-Events.  The threshold level of accuracy will depend on 

the goals and objectives of network key players. 

There are six major steps as shown in Figure 9 which outline the general process of treating 

network-disease.  The framework considers RF-biomarker augmentation while considering Table 

3.  

0.) Define the normal (non-diseased) and abnormal network conditions.  
1.) Specify a communication node pairing policy [7].  
2.) Collect an RF signature of authorized transmission states.   
3.) Specify the acceptable thresholds for diagnostic accuracy and predictive usefulness of 

RF-measurements.  
4.) Specify network treatment response thresholds to assist decision-making in 

uncertainty.   
5.) Assess the diagnostic accuracy for future prediction estimates.  
Refine the process and integrate recommendations for improvement. 
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Table 3. Criterion of Useful RF Diagnostic tests [40]  
 Network-disease should be serious or potentially so 

 (e.g. Inability to provide uplink access) 

1 
Network-disease should be relatively prevalent in the target 
population (Cyber Threat Rate is Increasing) 

2 
Network-disease should be treatable (Recommendations to 
Minimize risk of loss to Receiver or 𝑇𝑇𝑅𝑅 in some cases) 

3 
Availability of effective treatment responses infectious RF 
carriers who test positive (e.g. evidence of infection is present in a 
specified CubeSat’s received authentication log files) 

4 
The diagnostic test is not harmful to an authentication receiver nor 
cause unnecessary modifications of the incoming RF-Event’s 
physical RF characteristics. 

5 
The diagnostic test should be accurate in classification of benign 
vs. infectious RF-Events according to some policy-based 
threshold(s). 

 

 

 

Figure 9.  Multi-Factor Authentication Framework  

3.2.1 Multi-factor Authentication Framework Overview 

• 3.2.1.1 Network-disease Specification 
A network abnormality may be attributed to some known or unknown cause.  When the 

cause of a specified abnormality is suspicious of originating from unauthorized or malicious 

activity such as a cyberattack, its occurrence can be classified as a symptom of realization of 

network-disease. There may be several abnormalities which contribute to observable network-
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A specific statement of abnormal network behavior such as the loss of resource availability, 

caused by a successful DDoS cyberattack provides clarification for strategic targeting, planning, 

and mitigation of a specific network-disease outcome.  Moreover, a prevention strategy may 

specify those electronic transmission states that are authorized and unauthorized to assist in 

network-disease defense and mitigation.   

• 3.2.1.2 Policy Specification 
After network-disease specification and vulnerability assessment, a user’s policy may 

dictate the flow of information between electronic transmission devices for increased security 

control.  Policy specifies the desired communication paths which originate from trusted electronic 

devices in authorized transmission states.   In addition, naming convention, targeted RF fingerprint 

ROIs and RF-measurement criteria should be carefully considered.  The policy should also indicate 

the type of electronic receiver that will be employed for demodulation and ultimate authentication 

of received RF transmission events. Policy should state requirements for interoperability, 

standardization and invariant field selection.  Each of these decisions will guide the RF signature 

collections process.   Finally, levels of acceptance for fingerprint similarity should describe if 

additional testing is required when a test result is uncertain.   

• 3.2.1.3 RF Signature Benchmarking  
RF benchmarking provides trusted RF signatures for diagnostic comparison of new RF-

Event claiming to originate from a known fixed transmission source. An authenticating device 

may possess local or reach-back RF diagnostic capability.  When a local device is trained for self-

evident authentication of a received RF-Event, the device contains a trusted RF-signature template 

within its local memory and can conduct the benchmark similarity test while conducting normal 

communication operations.  The memory location of the processor is assumed to be secured for 

normal operations using RF fingerprints [57].   
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Such a device trains for self-evident authentication using device-specific observations of 

an authorized RF-Event transmission from a specified source. As the main characteristics of the 

RF-Event are collected, additional statistics may be considered if useful.   

During a diagnostic test, policy acceptance or rejection thresholds are used by the 

authentication device to provide a final test estimation of the RF-Events condition as either benign 

or infectious for causing network-disease.  RF signature collection provides an initial first step 

towards developing a useful network diagnostic test benchmark.  The aim is to collect a set of RF 

signatures, usable as templates for integration as a network treatment response in a comprehensive 

and wellness plan.  

• 3.2.1.4 RF-Biomarker Candidate Selection 
Following the collection of RF signature benchmarks, the screening of the most useful RF-

measurements is done using statistical and objective analysis.  A composite feature-set contains 

all RF-measurements and statistics of characteristic distributions, however they may not provide 

useful discrimination information for electronic devices that originate from the same manufacturer 

and only differ by serial number.  Such devices have digital minutia details such as MAC address 

and FCC-IDs, however they may be mimicked using software defined radios (SDRs) or even 

worse, may not be considered during network authentication.   

The purpose of RF-screening is the discovery of the set of RF-Biomarkers from the 

candidate feature-set, which provides the most useful electronic device verification accuracy. The 

goal of candidate screening is to provide the top verification feature-set of a claimed electronic 

device. The top performing RF-biomarkers are used to compare the logical contents of m to the 

physical attributes of the RF-Event’s benchmark to improve posterior classification estimates. 
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• 3.2.1.5 Gold Standard Validation 
A diagnostic test is a formal classification method that partitions a condition into two (e.g. 

True or False) generalized states [39].  A common diagnostic test, in practice, requires a standard 

reference for comparisons.  A benchmark comparison test quantifies a truth reference’s measures 

of performance and is commonly referred to, in the medical community, as a gold standard (GS) 

[42] [58] [39]. A device-specific gold standard (GS) is a source of information, which tells us the 

true status of received RF transmission event (RF-Event) [42] condition as either benign or 

infectious. In this article, the validation test GS file consists of a set of repeatable RF-Events 

originating from a single trusted device and one or more logically equivalent RF-Event 

transmissions which originate from physically distinct (distrusted) devices.   

Benchmark validation occurs when a GS truth reference is used to assess the diagnostic 

performance of a classifier and provides insight into the robustness of the benchmark’s trained RF 

signature against new unseen RF signatures.  A new validation set of RF-Event collections are 

collected from the trusted transmission device using identical configurations used for 

benchmarking to make up the GS file dataset of RF-Events.  In addition, RF-measurements are 

collected from 𝑇𝑇𝑅𝑅𝐵𝐵 by 𝑅𝑅𝑅𝑅𝐶𝐶.  

The goal is to design a truth reference dataset such that the combination of RF-Event 

conditions (benign vs. infectious) are unknown to a designated authentication device 𝑅𝑅𝑅𝑅𝐶𝐶.  The 

GS dataset contains the true RF pathology of an RF-Event’s condition as benign [𝑒𝑒 = 1] or an 

infectious condition [𝑒𝑒 = 0].  Upon receipt of a new RF-Event, 𝑅𝑅𝑅𝑅𝐶𝐶 employs local diagnostic 

testing, compares the RF-Biomarker feature-set to its known RF signature benchmark template 

and reports a diagnostic result.  A benign claim test result [𝑇𝑇 = 1] occurs when the pathological 

RF origin’s similarities of the RF-Event meet acceptable tolerance levels.   
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An infectious test result [𝑇𝑇 = 0] occurs when the pathological origin of the RF-Event 

which fails to meet sufficient origin similarity threshold levels.  To conduct a sensitivity or 

specificity test using a GS, the true condition of all RF-Events samples may consist of entirely all 

benign or infectious events.  

Often times, this practice provides insight into the system’s detection capability, but may 

not provide insight into future observations of RF-Event’s received under normal operating 

conditions.  To gain insights into normal operational performance, the GS file should contain an 

operationally representative proportion of infectious to benign RF-Events.  Such a GS file can then 

be used to assess the estimated system performance under various system modes.  The sequence 

and selection of benign vs. infectious RF-Events should occur randomly to avoid verification bias 

and to reduce unavoidable experimental errors. After all RF-events contained in the GS file have 

been presented to the system for classification the raw counts are tabulated for the True Positive, 

True Negative, False Positive, and False Negative probability rates  [39] as described in Section-

II (Measuring Diagnostic Accuracy).   

A conventional 2x2-count table provides preliminary diagnostic assessment, using a GS 

file for validation, of N RF-Events. A true positive (TP) GS test result occurs when a received 

carrier’s true signature condition is benign and a diagnostic test reports a benign condition [T=1, 

D=1].  A true negative (TN) condition occurs when the carrier’s true status is infectious and the 

diagnostic result is infectious [T=0, D=0].  When a diagnostic test reports an infectious carrier 

condition and the true condition indicated by the GS are benign, a false positive (FP) count is 

increased [T=1, D=0].  Similarly, when a GS indicates a true benign condition and the test reports 

an infectious condition, a false negative (FN) result occurs [T=0, D=1]. 
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At the conclusion of the GS validation test, the reported diagnostic results are compared to 

the truth reference of dataset under various threshold and parameter settings. Depending on the 

operational ecosystem that a user expects to employ diagnostic testing and their threshold level 

specifications, a receiver operating curve (ROC) may be useful in deciding the system settings that 

may provide the best performance to support their policy goals and objectives.   

Moreover, a visualization of diagnostic results may also be useful for Cyber defenders 

during network defense operations as decision-support cues.  The GS validation process concludes 

with a report of the intrinsic accuracy of each diagnostic test.  The intrinsic accuracy provides the 

inherent accuracy (ACC) of a diagnostic test.  The posterior classification accuracy provides 

insight into cost and benefit trade-offs associated with appropriate treatment selection following a 

diagnostic test.  

• 3.2.1.6 Treatment Response  
The purpose of this step provides diagnostic reasoning insight that involves a consideration 

of cost and benefit to the network itself, Cyber defender’s and key stake holder interests.  Some 

responses are automatic, however in uncertainty; an automatic response may pose high-risk 

situations.  A benign RF-Event is highly probable for originating from an authorized source 

transmission state and is not likely to cause network-disease to an authenticating device.  However, 

an infectious RF-Event contains suspicious origin integrity evidence which indicates abnormal RF-

Event transmissions that may lead to network-disease if such events go undetected or untreated.  

Treatment, in this context, refers to troubleshooting responses taken to mitigate or eliminate early 

warning signs of network-disease resulting from infectious credential acceptance.  
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3.2.1 6.1 Trade-Offs and Risk 
There are trade-offs associated with each post-test treatment response of a network’s 

diagnostic result.  A benefit occurs when the discovery of infection occurs [𝑇𝑇 = 1,𝑒𝑒 = 1] and 

attempts to gain access are blocked as a treatment response, which ultimately results in the non-

occurrence of network-disease.  However, a cost occurs when network-disease occurs despite the 

use of treatment (e.g. blocking).  If the cost of each diagnostic test were identical, then the more 

tests necessary to make a treatment decision increases with each additional test.  Decision-makers 

aim to make the correct network treatment decision with as few diagnostic tests as necessary.   

An arbitrary policy may specify a minimum accuracy of 90% pretest classification 

accuracy before recommending treatment for a network.  Policy determines the goals and 

objectives and RF-Event similarity thresholds of acceptance for a given operational ecosystem that 

has known threat prevalence.  When a diagnostic result falls below such a treatment threshold, a 

“do nothing” and continue to monitor treatment recommendation may occur to mitigate network-

disease symptoms.  When intrinsic diagnostic accuracy is undesirable and error are high, additional 

diagnostics maybe necessary to provide useful decision-support for treatment.  In Figure 10 a 

diagnostic test that falls between 𝑇𝑇ℎ1and 𝑇𝑇ℎ2 indicates inconclusive results and suggests a need 

for additional diagnostic testing.   

Network treatment options are recommendable for results greater than  𝑇𝑇ℎ1.   Situation (b) 

may occur when pre-test diagnostic accuracy results contain high errors resulting in less accurate 

posterior predictive estimates.  The use of two thresholds may provide enhanced performance in 

uncertainty.  Unfortunately, prior knowledge of the pre-test classification accuracy is often 

uncertain and lacks gold standard performance testing. 
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3.2.1.1.2 Risk 
Consider a common network infrastructure, which consists of n-nodes. Each node’s 

original configuration through common network administration has inherent trust. That is, the set 

of nodes, which form the backbone of the network, are the trusted devices.  𝑇𝑇𝑇𝑇  collections of 

trusted devices form RF-biomarker baseline signatures.  Signature development only considers 

authorized transmission carrier states.  Policy specifies trusted device pairings for network 

communications according to transmission source origination to destination.  RF signature 

comparisons occur as logical credential claims arrive to treatment 𝑅𝑅𝑇𝑇  nodes.   

If a physical and logical match is indicated, the bit-level credential is likely authentic and 

benign; however, when levels are significantly dissimilar, the origin integrity of the carrier is likely 

infectious and treatment recommendations to prevent network-disease may be necessary. When 

results indicate high risk, more information about the RF event may be necessary to validate the 

origin integrity of fixed transmission sources. 

𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘(𝑦𝑦) ≡ 𝑃𝑃[𝑒𝑒 = 1| 𝑇𝑇 = 𝑡𝑡]                                                           (2) 

In general larger values of 𝑌𝑌 indicate higher levels of risk.  In binary marker evaluations, 

we consider the simple setting where RF-Events either have high or low symptomatic risk values. 

That is, high 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘(0) ≡ 𝑃𝑃[𝑒𝑒 = 0| 𝑌𝑌 = 0] = 𝑒𝑒𝑃𝑃𝑁𝑁, or the low value where low 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘(1) ≡

𝑃𝑃[𝑒𝑒 = 1| 𝑌𝑌 = 1] = 𝑃𝑃𝑃𝑃𝑁𝑁. 

Pepe recommends that the distribution of risk in the population indicated by the RF-

biomarker should be reported (absolute risk and the frequencies of those risks in the population) 

[59].  The cumulative distribution function of the RF-biomarker under consideration is given by 

𝐹𝐹. The risk level is  

𝑅𝑅(𝐷𝐷) = 𝑃𝑃[𝑒𝑒 = 1| 𝑇𝑇 = 𝐹𝐹−1(𝐷𝐷)].                                             (3) 
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Let 𝑝𝑝 = prevalence which indicates how widespread the potential of network-disease 

(threat) is throughout the entire population under consideration. 

 

Figure 10. Post-Test Diagnostic Treatment Decision Rules in Uncertainty 

• 3.2.1.7 Refine/Update 
After final RF-Biomarker selection, threshold selections, a simulation assesses the 

posterior accuracy of a diagnostic test using a GS validation file. Updates to the framework 

proposal can occur at any step without regard to order. 

3.2.2 Decision Rules 

A decision rule [31] or corresponding likelihood ratio determines the maximum error 

criterion or maximum a posteriori (MAP).  A binary decision rule has two possible outcomes, 

when a new RF-measurement’s RF-Biomarker level falls within the tolerance region, then it is 

acceptable, rejected otherwise.  A tolerance region threshold 𝑒𝑒𝑡𝑡 classifies acceptable Euclidean 

distance levels of similarity for new RF-Biomarker measurements.  A receiver learns to recognize 

a device specific signature benchmark by observing 𝑛𝑛 independent normal benign RF-Events.   

After observation of the events, a self-similarity test occurs that consists of all “𝑛𝑛-vs.𝑛𝑛” 

observations, measurement and analysis of fingerprints to establish the true benchmark similarity 

levels for each local RF-Biomarker of a composite RF-DNA fingerprint.  
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The aggregation of three decision-rules (tolerance region, ordinal and continuous) aims to 

improve posterior probability classifications.  Screening, binary, continuous, ordinal and paired 

diagnostic tests were considered in this article. Each test can be utilized together, independently, 

or as a single stand-alone test depending on the cost and potential benefit of the test given.  A 

thorough discussion of each threshold decision rule is discussed in [39].  The initial screening of a 

receiver’s log file may be a logical place to conduct network-disease screening using a diagnostic 

test that meets policy thresholds.  During the decision to treat a network for symptoms of network-

disease, an initial screening level criterion 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 specifies the minimum level of RF origin 

similarity acceptance. This value was experimentally determined by setting 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑝𝑝. The 

screening tolerance is 

𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇𝑇𝑇𝐿𝐿  = (𝑛𝑛 ∗ 𝑝𝑝) ∗ 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 .                                             (4) 

3.2.2.1 Tolerance Region 
A policy-based tolerance region over a distribution of RF-measurements specifies an 

acceptable similarity level of at least a proportion 𝑝𝑝 of the population 𝑅𝑅 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑒𝑒𝑟𝑟 (RF-Events) 

with confidence (1 –  Ψ) is contained within its upper  (𝑈𝑈(𝑋𝑋)) and lower 𝐿𝐿(𝑋𝑋) limits of acceptance 

[60].  A regional tolerance region can be computed to support binary classifications of composite 

RF-DNA fingerprint authenticity using a threshold for acceptance or tolerance rejection, a 

(𝑝𝑝, 1 − α)  two-sided binary tolerance interval (𝐿𝐿(𝑋𝑋),𝑈𝑈(𝑋𝑋)) satisfies the condition 

𝑃𝑃𝑇𝑇{𝑃𝑃𝑇𝑇(𝐿𝐿(𝑋𝑋) ≤ 𝑋𝑋 ≤ 𝑈𝑈(𝑋𝑋)|𝑋𝑋) ≥ 𝜌𝜌} = 1 − 𝛼𝛼.                                            (5) 

Where ′α′ represents the significance level. Construction of localized RF-Biomarker 

tolerance regions aim to improve posterior classification of a composite binary tolerance interval.  

The tolerance region is created using a benchmark Composite RF-DNA fingerprint dataset of size 

N.  
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 The tolerance factor is computed based on a user’s specification for reliability of new 

comparisons made to a specified benchmark value.  The specifications include the content of   new 

′𝑋𝑋 = 𝑏𝑏′  RF-Events (independent random variable) that are to be tested, the overall level of 

confidence that the RF-Biomarker levels should fall within and the proportion of 𝑋𝑋 samples that 

should are acceptable to a known benchmark [60].  

Each tolerance region is adjusted using the Gauss-Kronrod factor 𝑘𝑘2 [30], which makes the 

interval slightly different from a conventional confidence interval which is generated about a 

distribution’s mean.  Using the training RF benchmark, a tolerance region is computed for each 

local RF-Biomarker candidate.  Each RF-Biomarker candidate component generates a localized 

benchmark using a  [(𝜌𝜌 = 𝑛𝑛), (Ψ = {90,95})] tolerance interval.  Threshold 𝑇𝑇ℎ1 accepts RF-

Events where the combined Euclidean distance of RF-measurements of similarity falls within the 

bounds of (5).  An extension is made to tune this decision rule to reduce errors made from 

composite averaging of all RF-measurements, instead each localized measurement develops its 

own local tolerance region specification in parallel. In uncertainty, two or more classifiers used in 

parallel, as shown in Figure 10b may improve posterior estimates when Bayesian aggregation is 

employed in uncertainty. 

3.2.2.2 Ordinal Valued Threshold 
The second decision-rule aims to refine the results obtained in (5) using an ordinal valued 

threshold.  When the total number of characteristic RF-Biomarker features is defined from {1, 2, 

…, b}, an ordinal threshold setting accounts for the majority vote ′O𝐿𝐿𝑉𝑉𝑡𝑡𝑉𝑉′ of local feature 

diagnostics that meet local policy threshold requirements for acceptable tolerance. 

𝑂𝑂𝑑𝑑𝑡𝑡 = ��
𝑏𝑏
2
� + 1� .                                                                        (6) 
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The ordinal valued data decision rule can be reduced to a binary result by comparing O𝐿𝐿𝑉𝑉𝑡𝑡𝑉𝑉 

to the threshold specified in (6) above as;  

  O𝐿𝐿𝑉𝑉𝑡𝑡𝑉𝑉 ≥ 𝑂𝑂𝑑𝑑𝑡𝑡, �
1,   𝑆𝑆𝑅𝑅𝑚𝑚𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑅𝑅𝑡𝑡𝑦𝑦 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑟𝑟𝑅𝑅𝑡𝑡𝑦𝑦 𝑒𝑒𝑅𝑅𝑅𝑅𝑟𝑟𝑡𝑡𝑟𝑟;
0,                                   𝑀𝑀𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑅𝑅𝑟𝑟𝑒𝑒.                                  (7) 

The threshold specification from (6) implies a majority of features, from measurements 

must meet or exceed local pathology similarity to the RF signature’s benchmark. For example, let 

𝑏𝑏 = 8 local RF-measurements.  Let each local RF-measurement that meets acceptable tolerance 

count as a vote for RF-Event similarity, while each local tolerance failure counts as a vote against 

RF-Event similarity.   When threshold [𝑂𝑂𝑑𝑑𝑡𝑡 = 5] and the count of local similarity acceptance meet 

or exceeds 𝑂𝑂𝑑𝑑𝑡𝑡, the RF-Event is counted as a benign RF-Event occurrence.   

3.2.2.3 Continuous Valued Threshold  
A third decision-rule option employs a continuous data threshold ′𝑍𝑍𝑑𝑑𝑡𝑡′ that provides an 

average risk ′�̅�𝑍𝑃𝑃𝑖𝑖𝑠𝑠𝑘𝑘′ of acceptance based on the benchmark similarity rating, using risk zones.  A 

risk zone divides a binary policy defined tolerance region from (5) into three weighted zones of 

similarity error (lower is better).  Where the upper and lower bounds for [𝑧𝑧 = 3] zones becomes;  

�𝐿𝐿𝑧𝑧(𝑋𝑋),𝑈𝑈𝑧𝑧(𝑋𝑋)� = 𝐿𝐿3(𝑋𝑋) < 𝐿𝐿2(𝑋𝑋) < 𝐿𝐿1(𝑋𝑋),  𝑈𝑈1(𝑋𝑋)  < 𝑈𝑈2(𝑋𝑋) < 𝑈𝑈3(𝑋𝑋).                   (8) 

Where each local RF-Biomarker candidate receives a risk zone match score that ranges 

from one to four.  In isolation, a risk zone match score value that is close to ‘1’ (i.e. Euclidean 

distance is near or equal to ‘0’) indicates an RF-Biomarker candidate that has a high similarity to 

the benchmark and presents a low risk of forged credential acceptance.   



www.manaraa.com

73 

 

When a pulse fails to meet the original benchmark’s binary tolerance interval, it receives a 

risk score of four to indicate complete tolerance region boundary failure.  When average risk zone 

scores are less than or equal to 𝑍𝑍𝑑𝑑𝑡𝑡, the pulse is accepted, and rejected otherwise.   A comparison 

of the average risk score (�̅�𝑍𝑃𝑃𝑖𝑖𝑠𝑠𝑘𝑘) to the threshold 𝑍𝑍𝑑𝑑𝑡𝑡 indicates the level of risk associated with 

allowing network access using the claimed logical credentials of an RF-Event.  A summary of the 

risk zone comparisons is  

  �̅�𝑍𝑃𝑃𝑖𝑖𝑠𝑠𝑘𝑘 ≤ 𝑍𝑍𝑑𝑑𝑡𝑡 , �
1,   𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡𝑎𝑎𝑏𝑏𝑝𝑝𝑒𝑒 𝑅𝑅𝑅𝑅𝑟𝑟𝑘𝑘;
0,              𝑀𝑀𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑅𝑅𝑟𝑟𝑒𝑒.                                                    (9) 

3.2.3 Measuring Diagnostic Accuracy 

A classification model maps each instance of an RF-Event ′𝑊𝑊′ to a predicted class. When 

conducting analysis of two independent (logical vs physical attributes) variables produced by 

physical RF transmission events we evaluate the performance of the diagnostic test to correctly 

classify the condition of the RF-Event’s claimed symptoms (decoded bits). The results of the 2x2 

count table provide input to computing the probability or predictability of the two conditions. 

• 3.2.3.1 Classification Model 
Consider a simple security policy that specifies a set of received authorized transmission 

states by a trusted network communications device as 𝑊𝑊, where each element of W is mapped to 

the set of instances {𝑟𝑟, 𝑅𝑅} [61]. For example, the RF-Event 𝑤𝑤𝑠𝑠 represents a verified transmission 

state that is secure. Such a state inherently includes the transmission source of origin while all 

other non-authorized transmission states 𝑤𝑤𝑖𝑖 are specified as insecure regardless of origin [62].  The 

research goal is to detect infectious behavior from unauthorized or insecure transmission origins 

and prevent electronic network-disease (𝑒𝑒𝑒𝑒𝑒𝑒) using pathological RF-DNA attributes to enhance 

logical credential authentication schemes.   To that end, we predict secure state classifications to 

be benign, while all insecure transmission state predictions are predicted to be infectious.   
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More formally, let the independent variable 𝑒𝑒 denote the true origin condition of an RF-

Event’s transmission state as 

𝑒𝑒 = �1                   𝑓𝑓𝑀𝑀𝑟𝑟 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛;
0      𝑓𝑓𝑀𝑀𝑟𝑟 𝑛𝑛𝑀𝑀𝑛𝑛 − 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛.                                                   (10)  

Let 𝑇𝑇 denote the result of some Diagnostic Test which classifies a received RF-Event 𝑊𝑊 

as either benign ′𝑤𝑤𝑠𝑠′ or infectious ′𝑤𝑤𝑖𝑖′.  Further, suppose that an RF-DNA fingerprint benchmark 

has been previously collected and saved for reference by authenticating device 𝑅𝑅𝑅𝑅𝐶𝐶.  

Consider a continuous decision threshold policy that ranges from zero (completely infectious) to 

one (completely benign). For pure binary decisions, the diagnostic test (𝑇𝑇) is represented as  

𝑇𝑇 = �1             𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟 (+)𝑓𝑓𝑀𝑀𝑟𝑟 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛;
0      𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟(−)𝑓𝑓𝑀𝑀𝑟𝑟 𝑛𝑛𝑀𝑀𝑡𝑡 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛.                                    (11)  

Given the results of 𝑇𝑇 and the true status 𝑒𝑒, four basic classification categories can be 

derived from raw test count classifications of true positive (TP), true negative (TN), false positive 

(FN) and false negative (FP) using a known benchmark truth or GS file truth reference as described 

previously.  The sensitivity (𝑆𝑆𝑒𝑒) of the diagnostic test provides the probability of a benign test 

𝑃𝑃(𝑇𝑇 = 1) and is determined by the TP count divided by the total number of RF-Events specified 

as having benign pathological RF origins. The specificity (𝑆𝑆𝑝𝑝) of diagnostic testing is the converse 

of the 𝑆𝑆𝑒𝑒, measures the capability to exclude infectious carrier conditions, and is expressed by 

𝑃𝑃(𝑇𝑇 = 0).  The prevalence ′𝑝𝑝′ of a specific network threat does not affect the intrinsic diagnostic 

accuracy indicated by a pre-test 𝑆𝑆𝑒𝑒 or 𝑆𝑆𝑝𝑝 accuracy of a diagnostic classifier [42].   

A Type-I error measures the FP rate that occurs in proportion to the total number of true 

benign carriers that exist in the GS. A Type-II error is determined by the FN rate of a carrier’s 

tested result as benign when in fact the RF-Event contains evidence of infection.    
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Predictive values quantify the usefulness of the paired diagnostic test result for network-

disease mitigation [39, p. 16].  The probability of a positive test is the positive predictive value 

(PPV) and the likelihood of a negative test result is the negative predictive (NPV). 

• 3.2.3.2 Pre-Test Classification Probabilities (Priori) 
  Probability classifications employ various names of the basic count categories.  We adopt 

the medical terminology in this article for the terms, true positive fraction, true negative fraction, 

false positive fraction and false negative fraction (TPR, TNR, FPR and FNR).   

Khanna describes the pre-test classification probabilities in terms of rates.  For example, 

when assessing a misdetection or false alarm rate of a system, the TPR may be used to describe 

the classification system’s reliability [58].  Fawcet uses the terms hit rate and recall [61], whereas 

the medical community employs the term sensitivity fractions. Pepe argues that the value is not a 

rate at all, but a probability [39].  Here we refer to the TPR as the sensitivity (𝑆𝑆𝑒𝑒) to detect a TP 

classification condition from a population of secure (trusted) instances of 𝑊𝑊 which exists when 

𝑆𝑆𝑒𝑒 = 𝑇𝑇𝑃𝑃𝑅𝑅 = 𝑃𝑃[𝑇𝑇 = 1 |𝑒𝑒 = 1].                                                 (12) 

• 3.2.3.3 Post-Test Classification Probabilities(Posterior) 
Predictive values are used to quantify how well (usefulness) a diagnostic test result predicts 

the true status of an RF-Event’s origin.  A positive predictive value (PPV) [39], false discovery 

rate (FDR), negative predictive value (NPV), and false omission rate (FOR) [39]. Bayes’ Theorem 

is adapted from [42] in general form for post-test probabilities as; 

𝑝𝑝(𝑒𝑒 = 𝑑𝑑|𝑇𝑇 = 𝑡𝑡) = 𝑝𝑝(𝑇𝑇=𝑡𝑡|𝐷𝐷=𝑑𝑑)𝑝𝑝(𝐷𝐷=𝑑𝑑)
𝑝𝑝(𝑇𝑇=𝑡𝑡|𝐷𝐷=𝑑𝑑)𝑝𝑝(𝐷𝐷=𝑑𝑑)+𝑝𝑝(𝑇𝑇=𝑡𝑡|𝐷𝐷=1)𝑝𝑝(𝐷𝐷=1)                                   (13) 

The posterior predictive values of a receiver-based diagnostic test are [39]: 

𝑃𝑃𝑃𝑃𝑁𝑁 = 𝑃𝑃[𝑒𝑒 = 1 |𝑇𝑇 = 1],                                                             (14) 

𝐹𝐹𝑒𝑒𝑅𝑅 = (1 − 𝑃𝑃𝑃𝑃𝑁𝑁) = 𝑃𝑃[𝑒𝑒 = 0 |𝑇𝑇 = 1],                                             (15) 
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𝑒𝑒𝑃𝑃𝑁𝑁 = 𝑃𝑃[𝑒𝑒 = 0|𝑇𝑇 = 0],                                                            (16) 

and 

𝐹𝐹𝑂𝑂𝑅𝑅 = (1 − 𝑒𝑒𝑃𝑃𝑁𝑁) = 𝑃𝑃[𝑒𝑒 = 1|𝑇𝑇 = 0].                                            (17) 

Where a perfect test predictor occurs when 𝑃𝑃𝑃𝑃𝑁𝑁 =  1 and 𝑒𝑒𝑃𝑃𝑁𝑁 =  1.  When there is no 

useful information about the true nature of an RF-Event’s origin integrity, the classifier is deemed 

useless.  This useless situation occurs when the 𝑃𝑃𝑃𝑃𝑁𝑁 =  𝜌𝜌 and 𝑒𝑒𝑃𝑃𝑁𝑁 =  (1 –  𝜌𝜌).   

The roles of 𝑒𝑒 and 𝑇𝑇 are reversed in the post-test predictive values relative to their roles in 

the pre-test classification probabilities [Pepe p. 16].  Post-Test classification probabilities are not 

used to quantify the inherent accuracy of a receiver’s diagnostic test [39].  

3.2.3.1.1 Measuring Predictive Usefulness  
Given 𝜌𝜌 and 𝑇𝑇𝑅𝑅𝑅𝑅, we can determine the 𝑆𝑆𝑒𝑒 probability that an RF-Event will test positive 

for being benign.  A pre-test probability is based on the RF-Event’s historical profile, modulation 

schemes, binary encodings, signs, symptoms, and results of any other diagnostic tests performed 

earlier such as logical credential verification [42]  [39] using classification probability parameters 

(TPR, FPR, 𝜌𝜌).  Using Bayes Theorem, multiple prediction estimations aim to improve the 

predictive accuracy of pre-test diagnostic results.  This article adapts two methods from medical 

diagnostic testing and a general method of aggregation adopted from Rosen et al.     

3.2.3.1.2 Relationship between Predictive Values and Classification Probabilities 
Predictive values are best used to quantify the usefulness of a diagnostic test [39, p. 16] 

while pre-test classification probabilities are best used to indicate the intrinsic accuracy of a 

specific diagnostic test.  Predictive values are used to assist and provide decision-support to Cyber 

and Network Operators by providing the likelihood that possible infectious or undesirable behavior 

is present given the diagnostic test results of Bayesian RF-DNA fingerprint filtering. 
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When knowledge of ρ from (8) or (9) is available, there is a direct relationship between 

posterior predictive values and priori classification probabilities.  Prediction values are dependent 

on three parameters that should be reported in diagnostic test performance results [39].   

On one hand, these three parameters can be found using the prior classification probabilities and 

the disease prevalence as (TPR, FPR, 𝜌𝜌).  Using predictive values, the parameters used after a 

diagnostic test is performed are (PPV, NPV, 𝜏𝜏) [39, p. 16].  The symbol 𝜏𝜏 indicates the probability 

that a specified diagnostic test will result in a positive test 𝑃𝑃[𝑇𝑇 = 1]. 

In the first medical example [39], the diagnostic test’s usefulness assessment employs 

Bayes Theorem to represent the post-test probabilities (PPV, NPV,𝜏𝜏) in terms of the pre-test 

probabilities (TPR, FPR, 𝜌𝜌) where 

𝑃𝑃𝑃𝑃𝑁𝑁 =
𝜌𝜌𝑇𝑇𝑃𝑃𝑅𝑅

{𝜌𝜌𝑇𝑇𝑃𝑃𝑅𝑅 + (1 − 𝜌𝜌)𝐹𝐹𝑃𝑃𝑅𝑅},                                                          (18)  

𝑒𝑒𝑃𝑃𝑁𝑁 =
(1 − 𝜌𝜌)(1 − 𝐹𝐹𝑃𝑃𝑅𝑅)

{(1− 𝜌𝜌)(1 − 𝐹𝐹𝑃𝑃𝑅𝑅) + 𝜌𝜌(1 − 𝑇𝑇𝑃𝑃𝑅𝑅)},                                               (19) 

and 

𝜏𝜏 = 𝜌𝜌𝑇𝑇𝑃𝑃𝑅𝑅 + (1 − 𝜌𝜌)𝐹𝐹𝑃𝑃𝑅𝑅                                                              (20) 

Moreover, the pre-test or priori probabilities are written in terms of Posterior probabilities 

and similarly found as  

𝑇𝑇𝑃𝑃𝑅𝑅 =
𝜏𝜏𝑃𝑃𝑃𝑃𝑁𝑁

{𝜏𝜏𝑃𝑃𝑃𝑃𝑁𝑁 + (1 − 𝜏𝜏)(1 − 𝑒𝑒𝑃𝑃𝑁𝑁)} ,                                                   (21) 

𝐹𝐹𝑃𝑃𝑅𝑅 =
𝜏𝜏(1 − 𝑃𝑃𝑃𝑃𝑁𝑁)

{𝜏𝜏(1 − 𝑃𝑃𝑃𝑃𝑁𝑁) + (1 − 𝜏𝜏)𝑒𝑒𝑃𝑃𝑁𝑁} ,                                                (22) 

and 

𝜌𝜌 = 𝜏𝜏𝑃𝑃𝑃𝑃𝑁𝑁 + (1 − 𝜏𝜏)(1− 𝑒𝑒𝑃𝑃𝑁𝑁).                                                   (23) 
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As a second medical community example of assessing the usefulness of diagnostic 

accuracy, Zhou’s application of Bayes’ Theorem computes the posterior probabilities using (4), 

(7), (15) and (16) as follows [42, pp. 48-49] ; 

   𝑃𝑃𝑃𝑃𝑁𝑁 =
𝑆𝑆𝑒𝑒 ∗ 𝑃𝑃(𝑒𝑒 = 1)

𝑆𝑆𝑒𝑒 ∗ 𝑃𝑃(𝑒𝑒 = 1) + (1 − 𝑆𝑆𝑝𝑝) ∗ 𝑃𝑃(𝑒𝑒 = 0)                                       (24) 

𝑒𝑒𝑃𝑃𝑁𝑁 =
𝑆𝑆𝑝𝑝 ∗ 𝑃𝑃(𝑒𝑒 = 0)

𝑆𝑆𝑝𝑝 ∗ 𝑃𝑃(𝑒𝑒 = 0) + (1 − 𝑆𝑆𝑒𝑒) ∗ 𝑃𝑃(𝑒𝑒 = 1)                                      (25) 

Rosen generally employs Bayes Theorem to mitigate infectious (the occurrence of 

electronic spam) message acceptance using word occurrence filters. More generally, if 𝐵𝐵𝑖𝑖 is the 

event where an RF-Event’s message contains a set of matching physical RF-Biomarker credential 

occurrences 𝑏𝑏𝑘𝑘, then by Bayes’ Theorem the prediction probability that a message containing all 

of the specified RF-Biomarker 𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑘𝑘 as benign similarity levels is found by 

𝑟𝑟(𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑘𝑘) =
∏ 𝑝𝑝(𝑏𝑏𝑘𝑘)𝑘𝑘
𝑖𝑖=1

∏ 𝑝𝑝(𝑏𝑏𝑘𝑘)𝑘𝑘
𝑖𝑖=1 + ∏ 𝑞𝑞(𝑏𝑏𝑘𝑘)𝑘𝑘

𝑖𝑖=1
.                                           (26) 

For a particular RF-Biomarker (𝑏𝑏𝑘𝑘) credential, the pre-test probability that an acceptable 

tolerance level of similarity for 𝑏𝑏𝑘𝑘appears in an infectious message is estimated by determining 

the proportion of 𝑏𝑏𝑘𝑘 appearances in known benign RF-Event distributions versus a distribution of 

all non-benign (infectious) message states exist.  Suppose that the probability of some RF-Event 

𝐵𝐵 contains a claimed logical message credential 𝑐𝑐𝑘𝑘 greater than '0', which implies that the RF-

Event did occur  [44, p. 20]. 

• 3.2.3.4Misclassification Probabilities (Errors) 
There are two types of errors that may occur during pre-test classification.  A Type-I error 

is referred to as the false positive rate (FPR) and is often indicated by the symbol alpha (𝛼𝛼).    
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When used in computer science applications, it is inappropriate to simply report the 

misclassification probability, instead report both components of the misclassification probability 

which is the FNR = (1-TPR) and the FPR [39].  The equation for a Type-I error is  

𝐹𝐹𝑒𝑒𝑅𝑅 = (1 − 𝑇𝑇𝑃𝑃𝑅𝑅) =  𝑃𝑃[𝑇𝑇 = 0|𝑒𝑒 = 1].                                         (27) 

A Type-II error rate or fraction estimates the probability that a receiver classifies an RF-

Event as infectious when the true state condition is benign as  

𝐹𝐹𝑃𝑃𝑅𝑅 = 𝑃𝑃[𝑇𝑇 = 1 |𝑒𝑒 = 0].                                                        (28) 

One method of quantifying diagnostic test accuracy is by considering the frequency of 

misclassification for each infectious RF-Event states.  The paired diagnostic results of (FPR,TPR) 

probabilities define the likelihood at which (4) occur during a particular diagnostic test  [39].  The 

likelihood of detecting a true negative condition (TNR) is the diagnostic test’s specificity (𝑆𝑆𝑝𝑝) and 

is defined as  

𝑆𝑆𝑝𝑝 =  𝑇𝑇𝑒𝑒𝐹𝐹 = (1 − 𝐹𝐹𝑃𝑃𝑅𝑅) = 𝑃𝑃[𝑇𝑇 = 0 | 𝑒𝑒 = 0].                                      (29)  

During hypothesis testing, we refer to the null hypothesis (𝐻𝐻0) for the true condition 

variable (𝑒𝑒 =  1) that an RF-Event likely originates from a trusted source origin versus the 

alternative hypothesis 𝐻𝐻𝑎𝑎 that (𝑒𝑒 = 0) an RF-Event probably does not originate from a trusted 

source origin.    The overall errors are often referred to as the misclassification probabilities and 

written using Se and FPR above, provided the prevalence of disease is known, 

  𝜌𝜌 =  𝑃𝑃[𝑒𝑒 = 0] = � ∑𝑤𝑤𝑖𝑖
∑𝑤𝑤𝑖𝑖+∑𝑤𝑤𝑠𝑠

� .                                                    (30)  
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When a gold standard benchmark is used, (8) is easily determined by taking the 

occurrences of a state’s true condition from a known dataset (gold standard) and divide the total 

of all samples in the dataset’s population.  The equation for misclassification probability or 

prevalence for (8) can be found using (4) and (6) above from [39] as 

𝜌𝜌 = 𝑃𝑃[𝑇𝑇 ≠ 𝑒𝑒] =  𝜌𝜌(1 − 𝑇𝑇𝑃𝑃𝑅𝑅) + (1 − 𝜌𝜌)𝐹𝐹𝑃𝑃𝑅𝑅.                                        (31) 

3.3 Methodology 

3.3.1 Experimental Set-Up  (Hardware and Software) 

The wired circuit depicted in Figure 11 represents the RF-DNA collection and networking 

experimentation circuit. Each circuit component is labeled with a letter and role for representative 

icon reference. For example, the device used to generate the initial message for collections is 

shown as (label | description) PC1| PC1: msg (message) generator.  The laptops in Figure 11a and 

Figure 11f are identically configured with the following; LabVIEW 2014 with RT Modulation 

Tool Kit, Math Script. Windows 10, (HP Zbook 15) with 32GB RAM, 500GB DDRL 4DM, 5400 

RPM, integrated NIC, I Core i7-4800MQ processor.  Software includes Microsoft Office 2013, 

Matlab 2015a, 2016a and Jump Pro 12.1.    Each physical circuit had physically distinct hardware, 

cables and antennae and could transmit or receive.  This experiment focused specifically on a 

simplex uplink transmission scenario.  

1) Transmission Circuit (Ground Station) 
𝑇𝑇𝑅𝑅𝐴𝐴, 𝑇𝑇𝑅𝑅𝐵𝐵 and 𝑅𝑅𝑅𝑅𝐶𝐶 are national instrument USRP-2922 software defined radios that differ 

by serial number only.  The blue dashed box on the left of Figure 11 represents the representative 

ground station circuit or transmission source 𝑇𝑇𝑅𝑅𝐴𝐴.  



www.manaraa.com

81 

 

In Figure 11a and Figure 11b represent that baseband logical message generator (msg), 

which transmits commands to the front end transmission device 𝑇𝑇𝑅𝑅𝐴𝐴 in Figure 11c (USRP 2922) 

for final modulation onto the uplink medium.   Devices 𝑇𝑇𝑅𝑅𝐴𝐴 and 𝑇𝑇𝑅𝑅𝐵𝐵 (red USRP 2922 in Figure 

11c) are the transmitters under test.  GS1 is defined as the benchmark validation test for 𝑇𝑇𝑅𝑅𝐴𝐴 

emissions as observed by receiver (authenticator) 𝑅𝑅𝑅𝑅𝐶𝐶.  𝑇𝑇𝑅𝑅𝐴𝐴’s RF emissions are collected for 

signature profile benchmarking.     𝑇𝑇𝑅𝑅𝐵𝐵 represents an arbitrary opponent transmitter that attempts 

to forge the credentials of 𝑇𝑇𝑅𝑅𝐴𝐴.   

2) RF-Event and Environmental Considerations 
A 2-FSK modulation scheme is used to transmit msg over FM using a carrier frequency of 

449.9MHz.  A 100 kHz offset is set from the center frequency of 450MHz.  Each pulse duration 

is approximately 6.399ms.  The receive circuit had a tunable bandwidth selector that was set to 

20kHz and detected each pulse using a tunable triggering mechanism based on the magnitude of 

the amplitude.  The FSK deviation was set to 1. 

There were eight total RF-measurements that were selected arbitrarily to include the 

instantaneous amplitude, frequency, and phase.  Preliminary results extracted RF-DNA 

fingerprints near the preamble of ICOM-9100 amateur radios used in an operational ground station 

circuit, where the amplitude provided the greatest accuracy for correct classification.  Therefore, 

the variance, skewness and kurtosis were set for collection using the USRP SDRs.  Finally, the 

root mean squared error of the amplitude was collected for each pulse.  

3) Extraction / Credential Diagnostic (CubeSat) 
In Figure 11a, b and c, the purple dashed box encloses the representative CubeSat receiver 

𝑅𝑅𝑅𝑅𝐶𝐶, which authenticates the origin integrity of messages claiming to have originated from 𝑇𝑇𝑅𝑅𝐴𝐴 

and is depicted Figure 11f, and Figure 11g.   
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For each RF-Event pulse (Figure 11d) successfully received by 𝑅𝑅𝑅𝑅𝐶𝐶 (Figure 11g), the RF-

DNA is extracted from 10 fixed and equally spaced sub regions plus the full wave regions using 

complex real and imaginary parts of the analog waveform.  This brings the total number of distinct 

RF-DNA contained within a complete collection to ([8 features] * [22 sub regions]) 176 RF distinct 

native attributes for possible selection as key discriminating factors.   

4) Output Files 
There are three output files that are generated by 𝑅𝑅𝑅𝑅𝐶𝐶 following RF-DNA collection.  

Initially, 𝑅𝑅𝑅𝑅𝐶𝐶 is trained to learn the RF-DNA of each trusted device 𝑇𝑇𝑅𝑅𝑖𝑖.   After that, the benchmark 

signature is validated for accuracy using new RF-DNA collections from unseen RF-Events from 

the same device.  After benchmarking, 𝑅𝑅𝑅𝑅𝐶𝐶 is placed in testing mode to assess the level of accuracy 

to diagnose messages which contain potentially infectious credentials. 

a) Data1: Raw waveform data 
Data1 is used to provide validation that a transmitted message is properly received as 

intended using matched modulation and demodulation schemes for final message decoding.     

a) Data 2:  RF-DNA signature 
The RF-DNA benchmark credential consists of the distribution of RF-Measurements 

previously defined by policy.  The benchmark consists of (8 RF-Measurement features * 22 real 

and imaginary regions of interest) for the full complimentary RF-DNA set. We analyze eight of 

these 176 using the real values of the full wave characteristics. 

b) Data 3:  Baseline RF-biomarker Levels: 
The distribution of measurements obtained from the RF-DNA subset is then assessed using 

Euclidean distance to assess the level of self-similarity that each feature has with itself.  The 

average result is used as the baseline RF-Biomarker similarity level.   
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In summary, 𝑇𝑇𝑅𝑅𝐴𝐴 and 𝑇𝑇𝑅𝑅𝐵𝐵 operational modes were set for transmission only.  SDR 𝑅𝑅𝑅𝑅𝐶𝐶 

functions as the authenticating device which collects RF-measurements transmitted RF-Events 

(command message).   𝑅𝑅𝑅𝑅𝐶𝐶 was trained using 𝑇𝑇𝑅𝑅𝐴𝐴’s authorized RF-Event transmissions for 

benchmarking and future 1-to-1 authentication validation.  𝑅𝑅𝑅𝑅𝐶𝐶’s sampling rate was set to 1MS/s 

to obtain 6.4k sample points per pulse.  The transmitted message has a 48-bit preamble, 48-bit 

payload and a 48-bit postamble. During GS validation, 𝑇𝑇𝑅𝑅𝐵𝐵 is used to provide infectious 

(unauthorized) transmissions at a prevalence ′𝑝𝑝′ rate up to 20%.   

Two commands transmitted from 𝑇𝑇𝑅𝑅𝐴𝐴 and 𝑇𝑇𝑅𝑅𝐵𝐵 are used.  All collections and RF-DNA 

processing was done using the physical circuit 𝑅𝑅𝑅𝑅𝐶𝐶, which is different from previous research that 

used a separate non-connected devices for collection and processing.  Empirical results suggest 

same device that collected RF-DNA should be used to validate future claims for consistency. 

(b)
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“Hello World” = w

(a)
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RF-Measurement(s)
Extractor/Collector
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Figure 11. Physical Network Diagram 
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• 3.3.1.1 Experimental Limitations 
  Collections were done in a lab ecosystem where the RF transmission devices were 

connected to a common ground source shared by Building 646 of the Air Force Institute of 

Technology (AFIT). Finally, demodulation and decoding verification had 80% levels of success, 

required multiple attempts to collect sufficient samples during a collection. The successful 

collection rate was approximately 70%.   

The poor performance in transceiver is explained by NI engineers stating that the 

uncalibrated devices were not “network ready [63] and that synchronization of the underlying 

FPGA modules were needed to increase decoding accuracy and synchronization [64] [65].  All 

devices had physically distinct hardware and logically equivalent configurations.  The research 

approach for post-processing and RF-Biomarker selection was conducted on previous RF-DNA 

fingerprint collections from six ICOM-9100 devices [66], resulting in similar performance. 

• 3.3.2 Dataset Selection   
• Benchmark:  File ‘Cir6DB2922Tx4FullStatsc1’ contains 1100*8 RF-measurement samples of RF-Events from A 

transmitting command-1.    

• Benign Claims: File ‘Cir6CL2922Tx4FullStatsc1contains 150*8 RF-measurement samples of RF-Events from A 
transmitting command-1. 

• Infectious Claims (B):  ‘Cir6DB2922Tx5FullStatsc1 contains 1009*8 RF-measurement samples of RF-Events from 
A transmitting command-1.  

Test Population Size: N = 150 for GS and 1100 for benchmark.  The tolerance factor for 

n-150 is [𝑘𝑘2 = 0.0696] and when [𝑛𝑛 = 1100], [𝑘𝑘2 =  0.0645] when using (5) to compute binary 

tolerance regions.  The coverage is set to 0.05 and the confidence is 90% for the tolerance region 

calculations.  

• 3.3.3 Pre-Processing 
Here, the full wave real valued RF-measurements considered are; absolute value of the 

peak Amplitude, instantaneous Frequency, instantaneous phase, variance of the amplitude, 

skewness of the instantaneous amplitude, kurtosis of the instantaneous amplitude, standard 
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deviation of the instantaneous amplitude, and the root mean squared error of the instantaneous 

amplitude.  Let 𝐵𝐵 = {1,2, … 𝑏𝑏} represent the set of RF-measurements used as RF-Biomarker 

candidates of network-disease diagnostics.  

• 3.3.4 Benchmarking Process 
The Euclidean distance metric is used to quantify the level of similarity between the 

benchmark and new RF-Event measurements.  An all vs. all approach is used to develop the 

benchmark’s level of self-similarity.  After finding such self-similarity, a tolerance ′𝑡𝑡𝑀𝑀𝑝𝑝′ region is 

determined by varying the acceptable Euclidean similarity distance from [0 to 1] using increments 

of 0.025.  When RF-measurements fall within the tolerance interval, the result is benign (Pass), 

otherwise, a fail results in an infectious classification.  The local and regional composite 

benchmark RF-measurement levels are shown in Figure 12.  The Composite benchmark and self-

similarity levels appear on the right.  The local RF-Biomarker candidate similarity levels appear 

on the let in green.  At the top of each measurement level, a tolerance region indicates the 

acceptable Euclidean distance from the benchmark that a new RF-Event will be accepted or 

rejected.  The tolerance region is divided into three risk zones.  When new RF-measurements fall 

outside of the upper and lower tolerance regions boundaries, the local or composite classification 

is Infectious. 

During the RF signature collections process, RF pulses contained significant variation from 

pulse to pulse.  Some explanation occurs from sampling procedures, while other variations occur 

due to a lack of device synchronization.  The USRP2922 devices are development and testing only 

devices and not as end network nodes.  We improved the synchronization between devices so that 

a binary string reception and synchronization offset occurs prior to demodulation in order to 

recover the baseband digital string with confidence.   
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This step provided verification that the proper message was readable.  The reliability of 

successful receipt was approximately 60%.  To mitigate this unfortunate effect, the RF-Event was 

collected such that the start and end time of each pulse was statistically identical between pulse 

collections yielding statistically consistent pulse collections of a known RF-Event.  To minimize 

triggered pulse impurities, a filter removes nonconforming pulses in the final benchmark 

distribution.  Using this method, we improved a saved pulse rate to nearly 80% acceptance during 

raw collections. 

 

Figure 12. Baseline Benchmark for Transmissions Device 𝑻𝑻𝑻𝑻𝑻𝑻.   

 

• 3.3.4.1 Decision Rules and Treatment Thresholds 
There are three customized classifier decision thresholds rules.  1.) 𝑒𝑒𝑡𝑡 provides a Pass /Fail 

classification as to whether a new RF-Event’s RF-measurements falls within tolerance 𝑡𝑡𝑀𝑀𝑝𝑝.  2.)  An 

ordinal valued threshold (𝑂𝑂𝑑𝑑𝑡𝑡 = 5) takes a set of B RF-Biomarker candidates’ RF-measurements 

and computes its all-vs.-all localized independent Euclidian distribution distance using 𝑡𝑡𝑀𝑀𝑝𝑝 as 

defined above.   
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In addition, 𝑂𝑂𝑑𝑑𝑡𝑡 considers a simple majority (b/2 + 1) of all RF-measurements that fall 

within local tolerance as a regional benign result.  When a lack of simple benign majority exists 

using 𝑂𝑂𝑑𝑑𝑡𝑡, the regional RF-Event is considered  infectious. 3.) Similar to the ordinal valued 

threshold, a continuous valued threshold considers a level of risk acceptance for each local RF-

Biomarker candidate using (𝑍𝑍𝑑𝑑𝑡𝑡 = 2.125).  Each candidate’s baseline tolerance region is further 

divided into three weighted risk zones.   

New RF-measurements that fall within risk zone-1 have the lowest weight of 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘 = 1. 

Moderate risk zone 2’s weighting is [𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘 =  2].  RF-measurements that fall within risk zone-3 

boundaries meet initial Euclidean distance tolerance levels, yet represents higher 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘 =  3. When 

an RF-measurement falls outside the upper or lower tolerance regions boundaries of risk zone-3, 

the risk is critical with 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘 = 4.   Each localized RF-Biomarker candidate reports its score and a 

regional average is considered for the overall level of risk acceptance for RF-Event’s further 

processing.  When the average regional risk is less than or equal to 𝑍𝑍𝑑𝑑𝑡𝑡, the RF-Event is classified 

as benign.  The RF-Event is classified as infectious when the regional risk level is greater than 𝑍𝑍𝑑𝑑𝑡𝑡.   

• 3.3.4.2 Treatment Response Thresholds.   
Three threshold values are arbitrarily chosen to demonstrate the experiments’ proof of 

concept.  The 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 = 20%, GS file size is 𝑛𝑛 = 150 and threat 𝑝𝑝 = 20%. The initial log file 

screening tolerance is 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇𝑇𝑇𝐿𝐿 = (150 ∗ 0.2 ∗ 0.2) = 6.  For a specified screening classifier, a 

decision rule to continue treatment against network-disease is assisted using an initial threshold 

rule as  

𝑇𝑇ℎ1 = �T,    𝑆𝑆𝑝𝑝𝑚𝑚𝑅𝑅𝑀𝑀𝑝𝑝𝑛𝑛𝑡𝑡𝑇𝑇𝑇𝑇 ≥ 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇𝑇𝑇𝐿𝐿;
F,                                   𝑀𝑀𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑅𝑅𝑟𝑟𝑒𝑒.                                        (32)  
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If infection is NOT detected by classifier 𝑒𝑒𝑇𝑇𝑖𝑖, that the sum of TN’s did not meet or exceed 

the screening tolerance level specification of suspected infection levels, consider the classifier’s 

predictive (posterior) usefulness for predicting benign RF-Events with low false omission errors. 

However, when the TN count meets or exceeds the minimum screening level, the system may be 

at risk of network-disease as a likely outcome.  The treatment responses are summarized with the 

following pseudo code using the threshold settings from Table 4 as follows;  

When [𝑻𝑻𝑻𝑻𝟏𝟏 = 𝑭𝑭]; //No Infection suspected 
If  [𝑷𝑷𝑷𝑷𝑷𝑷 ≤ 𝑻𝑻𝑻𝑻𝟒𝟒] ∩ [𝑭𝑭𝑭𝑭𝑹𝑹 ≥ 𝑻𝑻𝑻𝑻𝟓𝟓],  
 // EVIDENCE UNCERTAIN. 
 ASK FOR MORE DIAGNOSTIC TESTING 
Else 
 // REFUTABLE EVIDENCE 
 DO NOTHING 
End. 
When[𝑻𝑻𝑻𝑻𝟏𝟏 = 𝑻𝑻] ; Infection of Log Files Suspected 
If  [𝑻𝑻𝑪𝑪𝑪𝑪 ≤ 𝑻𝑻𝑻𝑻𝟐𝟐] ∪ [𝑭𝑭𝑷𝑷𝑹𝑹 > 𝑻𝑻𝑻𝑻𝟑𝟑] 
 // EVIDENCE UNCERTAIN. 
 ASK FOR MORE DIAGNOSTIC TESTING 
Else  
If  [𝑵𝑵𝑷𝑷𝑷𝑷 ≤ 𝑻𝑻𝑻𝑻𝟔𝟔]  ∩ [𝑭𝑭𝑶𝑶𝑹𝑹 > 𝑻𝑻𝑻𝑻𝟗𝟗] 
 // EVIDENCE UNCERTAIN. 
 ASK FOR MORE DIAGNOSTIC TESTING  
Else 
 // CONCLUSIVE EVIDENCE 
 TREAT FOR NETWORK-DISEASE 
End. 
 
 

Table 4. Treatment Decision-Support Threshold Summary 
Threshold 

/ Rule Parameter Value Default 

𝑻𝑻𝑻𝑻𝟎𝟎 Screen? [Yes/No] Yes 
𝑻𝑻𝑻𝑻𝟏𝟏 Symptoms? [T/F] T 
𝑻𝑻𝑻𝑻𝟐𝟐 ACC (0:1) .9 
𝑻𝑻𝑻𝑻𝟑𝟑 FPR (0:1) .1 
𝑻𝑻𝑻𝑻𝟒𝟒 PPV (0:1) .95 
𝑻𝑻𝑻𝑻𝟓𝟓 FDR (0:1) .05 
𝑻𝑻𝑻𝑻𝟔𝟔 NPV (0:1) .95 
𝑻𝑻𝑻𝑻𝟗𝟗 FOR (0:1) .05 

𝑭𝑭𝑶𝑶 
Global 

Euclidean 
Distance 

(0:1) .05 

𝑶𝑶𝑶𝑶𝑶𝑶 
Local 

Majority [0:b] 5 

𝒁𝒁𝑶𝑶𝑶𝑶 
Risk 

Zones [0:4] 2.125 
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When a benign test result meets or exceeds threshold limits, the treatment recommendation 

is “DO NOTHING.”  This response implies that a Cyber Operator should continue to monitor the 

health of the network for signs of infections or abnormal behavior.  When an infectious test result’s 

NPV are less than 90% certain and the PPV, then “Recommend ADDITIONAL TESTING.”  In 

this case, more diagnostic tests should be combined with the initial diagnostic test to improve the 

negative prediction or rule out as benign. 

• 3.3.5 Metrics 
Each classifier’s performance is evaluated for classification accuracy of the truth reference 

GS file before and after Bayesian aggregation. The intrinsic accuracy and predictive usefulness 

results will be used to provide decision-support recommendation to treat, do nothing or ask for 

more diagnostic testing towards mitigation of network-disease. Using the raw counts of TN, TP, 

FN and FP, the priori classification probabilities of TPR, FPR, TNR and FNR will be computed 

to provide the pre-test classification probabilities and the overall intrinsic accuracy.  

Next the usefulness of posterior prediction estimation is assessed by evaluating the 

probabilities for the PPV, FDR, NPV and FDR classifications.  A screening of RF-Biomarker 

candidates selects the highest pre-test and post-test accuracies with minimal errors while 

considering the treatment decision rules from Table 4 to establish performance cut-offs.   

Generally, higher intrinsic accuracy is better and higher posterior predictive accuracy is better.  

The top performing classifiers are selected for Bayesian aggregation with the aim of improving 

the posterior classification estimations.  Independent RF-Biomarker candidate classifiers should 

not be combined with custom classifiers to avoid duplicating a same classifier selected bias. The 

final selection of the top performing classifier’s is reported as the final set of RF-Biomarkers of 

network-disease for device A. 
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3.4 Results 

3.4.1 Visualization and RF Fingerprint Discovery 

The waveform displayed in Figure 13 shows a preamble that is 48-bits in length used as 

the baseline transmitted and received RF-Event.  The message “Hello World” is transmitted with 

a 48-bit preamble followed by a 48-bit postamble and ends at ~0.003-seconds of the RF event. The 

trail edge of the USRP’s RF-Event is lengthy compared to the actual encoded message.  

The top graph depicts the averaged received waveform by Circuit-4 while in an authorized 

state of circuit transmissions by 𝑇𝑇𝑅𝑅 Circuit-6 using 6400 total pulses selected from a pool of four 

specified commands.  During this research, the trail edge could not be modified and as a 

consequence, consecutive transmission had a minimum wait time of 2 seconds, delaying 

processing time for real time processing and response actions.  In Figure 13, the preamble region 

shows the real part of the waveform's magnitude.  The distinct structure of the amplitude’s 

magnitude enables visual clarity when determining if logical decoding of the message.  In this 

case, the 2-FSK encoding aligns well with the 48-bit preamble bit stream, where a binary encoded 

1 represents a low frequency response in amplitude and a 0 represents a higher response.   The 

graph uses Lab VIEW 15 code to support this effort in the summer of 2016. 

The purpose of Figure 13 is to provide visual assurance that a transmitted message is 

successfully received, demodulated and decoded by a designated authentication device. As shown,  

𝑅𝑅𝑅𝑅𝐶𝐶 successfully decodes RF-Events at the bit-level for specified ROI recognition.  The lower 

graph of Figure 13 indicates successful decoding of the 48-bit preamble portion of the RF-Event 

using 2-GFSK demodulations originally transmitted by 𝑇𝑇𝑅𝑅𝐴𝐴.  In this experiment, the entire 

waveform was considered as the invariant ROI. In practice, this may not be straight forward when 

portions of fixed messages contain additional synchronization fields that increment automatically. 
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To enhance intuition, when statistical means testing is available, a visualization which 

combines the distribution of a GS file’s RF-measurements to the distribution of the trusted 

benchmark may be useful.  In Figure 15, a contour plot of the RF-Biomarker’s whose mean was 

significantly different from the trusted benchmark is shown. 

 

Figure 13. 2-GFSK Waveform   

From top to bottom, the amplitude, frequency, phase and standard deviation RF-

measurements are plotted against a two-level amplitude.  The distribution of RF-measurement 

values, when the amplitude was low is shown on the left, while the distribution of feature values 

extracted using specified RF-measurements appear on the right of Figure 15.  In addition, each 

candidate RF-Biomarker is separated by its own scale and stacked on top of each other to visually 

portray an electronic version of an electrophoresis DNA plot.  A comparison of the electronic 

strands of ‘GS file vs. benchmark’ for each RF-Biomarker candidate reveals some significant 

differences in the mean distribution of the underlying RF-Events. Specifically, 𝑏𝑏2’s benchmark 

appears to suffer from visible distribution splitting when compared to original benchmark strand.  
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The greater the statistical difference in electronic similarity, the larger the split appears.  The 

prevalence rate is 20% and the noise tolerance level is set at 0.05%.  This observation is called rf-

splitting of a main characteristic’s RF-Biomarker strand.   

When a candidate is selected as an RF-Biomarker, rf-splitting of a main RF characteristic 

is observed and the difference is statistically significant, the occurrence suggests a good indicator 

of unauthorized RF transmissions.  Such visual observation of rf-splitting may provide enhanced 

decision-support cues for network operators monitoring their real-time networks.  A combination 

of factors which include, visual, statistical and best practice corroboration lends itself to decision-

support cue acceptance for network monitoring operations. When reliability of decision-support 

cues is feasible, a simple visualization such as a bar chart can be used as a quick reference to 

indicate abnormal network behavior.  

In Figure 16 the results of the GS files show the pathological benchmark similarity results 

(grey) plotted on top of the benchmark (green) levels.  There were a total of 120 benign pulses and 

30 infectious pulses in the mixture GS file dataset from column two of Table 5.  As shown in 

Figure 16c, the system correctly diagnosed all benign (blue) pulses, and correctly detected the 

infectious (red) pulses that failed to meet RF-biomarker thresholds.  The entire GS file 

classification (gray) shown in Figure 16c indicates concern for network-disease, since the lowest 

performing classifier’s TN count exceeded the minimum threshold of six using (6) above and 

suggests a need for more diagnostic testing before recommending a treatment response. More 

specifically, a low level of benchmark similarity is observed by RF-Biomarker candidates 𝑏𝑏2, 𝑏𝑏4 

and 𝑏𝑏6. Without having knowledge of what these markers indicate at varying system levels, the 

certainty of infection is not conclusive.  The levels of  𝑏𝑏3 indicate a medium risk of infection using 

𝑍𝑍𝑑𝑑𝑡𝑡.   
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Figure 14. RF-DNA benchmark contour plot [n=1100] RF-Events observed by 𝑅𝑅𝑅𝑅𝐶𝐶  
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Figure 15.  RF-Biomarker 𝑏𝑏2 indicates Rf-splitting of random log file batch [n=150] 

 

Batch processing might best be used as a forensics augmentation tool for example [8] for 

electronic authentication device log files.  This approach may not be readily useful for real-time 

information systems that require a pulse by pulse response recommendation.   

               rf-splitting 
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Infectious GS file RF pulse #5 (red bars) in Figure 16 was is compared to 𝑅𝑅𝑅𝑅𝐶𝐶′𝑟𝑟 benchmark 

of 𝑇𝑇𝑅𝑅𝐴𝐴′ 𝑟𝑟 authorized transmission of ‘command-1’.   Similarity results that compare the single pulse 

to the composite RF-DNA fingerprint are shown on the left of Table 1. RF-Biomarkers 1-6 fail all 

diagnostic tests, while markers 7-8 falls within a medium risk of truly being infectious.  A 

significant low level of dissimilarity for 𝑏𝑏2, 𝑏𝑏6 suggest a significant deficiency in benign levels 

that would be expected to be found in a normal benign pulse received from 𝑇𝑇𝑅𝑅4, while the 

concentration of 𝑏𝑏3 and 𝑏𝑏5 indicate significant high concentration levels that are outside the 

observed (𝑅𝑅𝑅𝑅𝑑𝑑) boundaries for the composite RF-DNA fingerprint. 

   

Figure 16.  Benchmark vs. single infectious credential originating from 𝑻𝑻𝑻𝑻𝟓𝟓. 

3.4.2 Benchmark Results 

After decoding confirmation, the benchmarking of 𝑇𝑇𝑅𝑅𝐴𝐴 was conducted to include a self-

similarity test to assess the level of consistency that the transmitter had.   
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The self-similarity level is used as the average expected value for all new RF-Events.  The self-

similarity results of the benchmark tests are provided in the far right column of Table 5. The 

benchmark assists classification of new credential authenticity claims in uncertainty.  A batch of 

150 new validation samples are used in the GS reference dataset where 𝜌𝜌 = 0.2.  Initially, the 

training set of RF-Events collected from 𝑇𝑇𝑅𝑅𝐴𝐴 resulted in a composite self-similarity score of 

75.74%.  With the acceptable composite similarity tolerance set to 0.05 average Euclidean 

distance, the upper and lower bounds for a 95% confidence interval is 79.5358% and 71.9610% 

respectively.   

A classification of any new composite measurement that falls within the bounds is, rightly 

or wrongly, benign using classifier 𝑒𝑒𝑡𝑡 in isolation.  As observed in Table 9, the false positive rate 

using 𝑒𝑒𝑡𝑡 fails to meet the minimum requirements of 𝑇𝑇ℎ3.  Moreover, its intrinsic accuracy of 84% 

also fails to meet requirements of 𝑇𝑇ℎ2.  The use of 𝑒𝑒𝑡𝑡 in isolation implies a high level of uncertainty 

and requires additional diagnostic testing before a treatment response recommendation occurs. 

When the localized components of the RF-DNA fingerprint were considered, their independent 

self-similarity scores were maintained separately for classification and then evaluated using 

classifier 𝑂𝑂𝑑𝑑𝑡𝑡 and 𝑍𝑍𝑑𝑑𝑡𝑡.  The local self-similarity scores appear in the far right hand column of Table 

5.   The tolerance region upper and lower boundaries for each risk zone are in Table 6.  Using 𝑂𝑂𝑑𝑑𝑡𝑡 

at the same system settings as 𝑒𝑒𝑡𝑡, achieves an intrinsic accuracy of 99.33%, while classifier 𝑍𝑍𝑑𝑑𝑡𝑡’s 

ACC is 98%.  A treatment recommendation response using combined diagnostic results from 𝑂𝑂𝑑𝑑𝑡𝑡 

and 𝑍𝑍𝑑𝑑𝑡𝑡 provides more certainty.  However the decision to treat using 𝑍𝑍𝑑𝑑𝑡𝑡 alone is still uncertain 

because the predictive estimate for NPV of 90.9% fails to meet the treatment requirements of 𝑇𝑇ℎ6 

as specified in Table 4 above.  At this point, classifier 𝑂𝑂𝑑𝑑𝑡𝑡 meets all requirements for usefulness 

and a conclusive decision to “TREAT” the network can be recommended.   
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Sometimes, the practice of a single point of classification may be insufficient evidence.  In 

such situations, additional diagnostics may be necessary to corroborate evidence claims.  A 

visualization of the mean’s test statistical result appears in Figure 17.  RF-Biomarker candidate’s 

𝑏𝑏2, 𝑏𝑏3 and 𝑏𝑏6 appear as potentially useful classifiers for low tolerance levels. Candidate 𝑏𝑏4 had the 

4th highest p-Value. 

Table 5. Diagnostic Benchmark Similarities for self, GS and Infectious Pulse 
 RF-Event Similarity 

RF-
Biomarker 
Candidates 

Infectious 
RF-Event (5) 

n=1, p=1 

Gold Standard Batch 
n= 150, p=0.2 

Device A 
Benchmar
k n=1100, 

p =0 
𝒃𝒃𝟏𝟏 14.20 24.11 23.87 
𝒃𝒃𝟐𝟐 19.10 83.61 99.87 
𝒃𝒃𝟑𝟑 97.17 61.11 59.83 
𝒃𝒃𝟒𝟒 94.99 97.71 99.72 
𝒃𝒃𝟓𝟓 33.55 24.77 23.86 
𝒃𝒃𝟔𝟔 65.83 92.31 99.10 
𝒃𝒃𝟗𝟗 97.46 98.83 99.86 
𝒃𝒃𝟒𝟒 97.46 98.83 99.86 

Composite 
Strength 

Score 
64.97 72.67 75.74 

 

Table 6. kFactor = 0.0645 and 0.0696 when (n=1100, 150) [60] [67], coverage=.05,confidence= 1-alpha)) 
( tol = .05 and 𝑝𝑝 =.2) 

 Upper Risk Tolerance Lower Risk Tolerance 
 Zone-3 Zone-2 Zone-1 Zone-1 Zone-2 Zone-3 
𝒃𝒃𝟏𝟏 23.8812 23.5616 23.4551 23.0289 22.9224 22.6027 
𝒃𝒃𝟐𝟐 98.9549 98.9548 98.9548 98.9546 98.9545 98.9544 
𝒃𝒃𝟑𝟑 62.1450 61.5796 61.3911 60.6372 60.4487 59.8832 
𝒃𝒃𝟒𝟒 98.2408 98.2174 98.2096 98.1784 98.1706 98.1472 
𝒃𝒃𝟓𝟓 24.2642 23.8955 23.7727 23.2812 23.1583 22.7896 
𝒃𝒃𝟔𝟔 98.1819 98.1663 98.1611 98.1402 98.1350 98.1194 
𝒃𝒃𝟗𝟗 98.6182 98.6062 98.6023 98.5864 98.5824 98.5705 
𝒃𝒃𝟒𝟒 98.6182 98.6062 98.6023 98.5864 98.5824 98.5705 

 

The difference between the benchmark (red line) mean is significant for 𝑏𝑏2, 𝑏𝑏3 and 𝑏𝑏6 at a 

tolerance level of 0.05.  The differences between RF-measurement means are not significant for 

𝑏𝑏1, 𝑏𝑏4, 𝑏𝑏5, 𝑏𝑏6 or 𝑏𝑏7 at this setting.  Initially, the low p-Values of  𝑏𝑏2 < 0.0001, 𝑏𝑏3 =0 .0013 and 

𝑏𝑏6=0.0098, appear as the top candidates for RF-Biomarker selection for Euclidean distance 

tolerances of +-0.05%.  However, 𝑏𝑏4’s ACC would emerge as a better indicator at higher tolerance 

levels than 𝑏𝑏3.    
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Table 7. Statistical Analysis: P-Values 
Benchmark Gold Standard Validation Testing 

(n=150), Tol = 0.05 dF = 149 

N=1100 
df = 1099 

100% 
Benign 

100% 
Infectious 

20% 
Prevalenc

e 

t-Test 
(p-value) 

 𝒃𝒃�𝟏𝟏 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏𝟗𝟗𝟒𝟒 0.0226 -0.0832 0.049 .9266 
(0.3556) 

𝒃𝒃�𝟐𝟐 = 𝟎𝟎.𝟑𝟑𝟒𝟒𝟗𝟗𝟗𝟗𝟒𝟒 0.34995 0.09941 0.2994 -6.0695 
(<.0001)* 

 𝒃𝒃�𝟑𝟑 = −𝟒𝟒𝟗𝟗.𝟗𝟗𝟒𝟒 -18.61 -10.641 -20.863 3.2736 
(0.0013)* 

𝒃𝒃�𝟒𝟒 = 𝟎𝟎.𝟏𝟏𝟎𝟎𝟗𝟗𝟐𝟐𝟐𝟐 0.1084 0.09746 0.10588 -1.6586 
(0.0993) 

𝒃𝒃�𝟓𝟓 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟐𝟐𝟏𝟏𝟏𝟏 0.00024 0.0006 0.00027 1.0965 
(0.2746) 

 𝒃𝒃�𝟔𝟔 = 𝟏𝟏.𝟓𝟓𝟓𝟓𝟗𝟗𝟑𝟑𝟒𝟒 1.56044 3. 64867 2.06577 2.6168 
(0.0098)* 

𝒃𝒃�𝟗𝟗 = 𝟎𝟎.𝟑𝟑𝟐𝟐𝟗𝟗𝟒𝟒𝟒𝟒 0.32923 0.31075 0.3247 -1.5729 
(0.1179) 

𝒃𝒃�𝟒𝟒 = 𝟎𝟎.𝟑𝟑𝟐𝟐𝟗𝟗𝟒𝟒𝟐𝟐 0.32923 0.31073 0.32468 -1.5759 
(0.1172) 

 

Each RF-Biomarker’s usefulness in similarity discrimination is assessed, where the 

specified RF-measurement mean from each GS file is compared to the original benchmark trained 

fil’s mean.  Using a t-Test, the p-Value for the mixture GS file is provided in the far right column 

of Table 7.  In Table 7, the means comparisons tests for each localized RF-Biomarker candidate is 

provided for benchmark comparisons against truth references for a 100% benign test, 100% 

Infectious test and a 20% treat prevalent test. 

 

Figure 17. P-Values and Early RF-Biomarker Candidate Selection. 
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3.4.3 Gold Standard Validation Results 

• 3.4.3.1 Pre-Test Count Totals 
The raw counts results of each classifier when tested against the GS file are shown in Table 

8.  There were a total of 120 benign RF-Event samples in the dataset, while 30 RF-Events were 

truly infectious RF-Events originating from 𝑇𝑇𝑅𝑅𝐵𝐵 using logically equivalent software 

configurations.  The table is divided between custom classifier analysis of the local RF-Biomarkers 

and each independent candidate’s performance.   Six of eleven classifiers correctly detected all 

120 benign RF-Events originating from 𝑇𝑇𝑅𝑅𝐴𝐴.  In addition, six of eleven classifiers detected all 

infectious RF-Events correctly.  However, only 𝑏𝑏2 and 𝑏𝑏6 achieved perfect classification at the 

tested system setting.  𝑒𝑒𝑡𝑡, 𝑏𝑏6 and 𝑏𝑏7 had the highest false positive counts of 23, while 𝑏𝑏1, 𝑏𝑏5 and 

𝑏𝑏7 had false negative counts of 115 or more. 

 

Table 8. Count  (p = 0.3 tol =0.05 n-150, k2 = 0.0645) 
Classifier TP FP TN FN 

𝑭𝑭𝑶𝑶 120 23 7 0 

𝑶𝑶𝑶𝑶𝑶𝑶 119 0 30 1 

𝒁𝒁𝑶𝑶𝑶𝑶 117 0 30 3 

𝒃𝒃𝟏𝟏 0 0 30 120 

𝒃𝒃𝟐𝟐 120 0 30 0 

𝒃𝒃𝟑𝟑 5 1 29 115 

𝒃𝒃𝟒𝟒 120 3 27 0 

𝒃𝒃𝟓𝟓 0 0 30 120 

𝒃𝒃𝟔𝟔 120 0 30 0 

𝒃𝒃𝟗𝟗 120 23 7 0 

𝒃𝒃𝟗𝟗 120 23 7 0 

 

• 3.4.3.2 Intrinsic Accuracy Results 
Following the raw classification counts assessed against the GS file, the research turns 

towards assessing the intrinsic accuracy of each classifier in isolation.  The ACC is used to indicate 

the level of accuracy that a classifier is expected to achieve before a diagnostic test is administered.   
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A receiver operating curve (ROC) of the diagnostic Se vs. FPR is shown in Figure 18 using four 

tolerance levels (0.05, 0.2, 0.4 and 0.5) are initially used to provide additional insight into 

candidate RF-Biomarker performance before final diagnostic test selection. All pre-test 

classification probabilities are provided in Table 9 for  [𝑡𝑡𝑀𝑀𝑝𝑝 = 0.05] and all other default system 

settings.  In, candidates for RF-Biomarker selection, 𝑏𝑏2, 𝑏𝑏3 and 𝑏𝑏4 have acceptable levels of 

Sensitivity with low false positive errors. RF-Biomarker candidate  𝑏𝑏4 exceeds the FPR threshold 

when [𝑡𝑡𝑀𝑀𝑝𝑝 > 0.025].  RF-Biomarkers 𝑏𝑏1, 𝑏𝑏3 are not useful and a performance with a 100% FPR.  

RF-Biomarker 3’s sensitivity of 3% failed to meet the minimum acceptable threshold for ACC.  

As the tolerable Euclidean distance for similarity acceptance increases, a general increase 

in the RPF occurs for all RF-Biomarker candidates, but at various rates.  This suggests that a 

selection of RF-Biomarkers may be more useful at various SNR levels. As shown, RF-Biomarker 

candidate 𝑏𝑏2 meets the TPR and FPR thresholds when [𝑡𝑡𝑀𝑀𝑝𝑝 < 0.55].  Moreover, as the tolerance 

parameter increases, a different pairing of RF-Biomarkers candidates emerges as possible 

selections to improve posterior accuracy.   

For example, when tol = 0.5, the best selection of RF-Biomarkers candidates, that meets 

all decision rules threshold requirements from Table 4, is candidate 𝑏𝑏2only.  When tol = 0.02, 𝑏𝑏2 

and 𝑏𝑏6 provide the best accuracy for detecting benign RF-Event credentials.  RF-Biomarker 𝑏𝑏6 

fails FPR thresholds at tol > 0.3, while 𝑏𝑏3’s limit is tol = 0.2.  In this experiment, RF-Biomarker 

candidates 𝑏𝑏1, 𝑏𝑏5, 𝑏𝑏7 and 𝑏𝑏8 failed to meet the maximum FPR threshold at any system setting.  

Although every RF-Biomarker reached acceptable levels for sensitivity when the tol reached its 

limits of tol =1, the high FPR indicates a high acceptance of infectious credentials if these markers 

are used as the sole indicator of for credential verification.    
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RF-Biomarkers 𝑏𝑏7and 𝑏𝑏8 are sensitive to benign credential acceptance; however, there are 

considerable false positive errors, which rule them out as useful RF-Biomarkers that can assist in 

network-disease detection and mitigation. 

 

Figure 18.  Diagnostic ROC comparisons for tol = 0.05 and 𝑝𝑝 = 20%  

 

Table 9. Pre-Test Classification Probabilities (tol = 0.05 and 𝑝𝑝 =0.2) 
Threshold TPR FPR TNR FNR ACC 

𝑭𝑭𝑶𝑶 1 .7667 .2333 0 .8467 

𝑶𝑶𝑶𝑶𝑶𝑶 .9917 0 1 .0083 .9933 

𝒁𝒁𝑶𝑶𝑶𝑶 .9750 0 1 .0250 .9800 

𝒃𝒃𝟏𝟏 0 0 1 1 .2000 

𝒃𝒃𝟐𝟐 1 0 1 0 1 

𝒃𝒃𝟑𝟑 .0417 .0333 .9667 .9583 .2267 

𝒃𝒃𝟒𝟒 1 .1000 .9000 0 .9800 

𝒃𝒃𝟓𝟓 0 0 1 1 .2000 

𝒃𝒃𝟔𝟔 1 0 1 0 1 

𝒃𝒃𝟗𝟗 1 .7667 .2333 0 .8467 

𝒃𝒃𝟒𝟒 1 .7667 .2333 0 .8467 
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Figure 19. Diagnostic ROC comparisons for tol = [0.5, 0.2, 0.4, 0.5] and 𝑝𝑝 = 20%  

• 3.4.3.4 Posterior Classification Probability Results 
The thresholds network treatment when infection of log files is suspected is set to 95% and 

our 5% errors as shown in Table 4 previously.  The findings when the system was set to tol=0.05 

are found in Table 10.  To determine independent classifier usefulness, we consult Table 4’s set of 

threshold values, but may change depending on the user and their objectives.  Classifiers 𝑒𝑒𝑡𝑡, 𝑂𝑂𝑑𝑑𝑡𝑡, 

𝑏𝑏2 and 𝑏𝑏6 meet all treatment response threshold requirements.  Candidates 𝑏𝑏3, 𝑏𝑏7 and 𝑏𝑏8 suggest 

random guessing and may indicate a lack of usefulness. 

Table 10. Post-Test Probability Estimates (tol = 0.05 and 𝑝𝑝 =0.2) 
Threshold PPV FDR FOR NPV 

𝑭𝑭𝑶𝑶 .8392 .1608 0 1 

𝑶𝑶𝑶𝑶𝑶𝑶 1 0 .0323 .9677 

𝒁𝒁𝑶𝑶𝑶𝑶 1 0 .0909 .9091 

𝒃𝒃𝟏𝟏 - - - - 

𝒃𝒃𝟐𝟐 1 0 0 1 

𝒃𝒃𝟑𝟑 .5556 .4444 .5556 .4444 

𝒃𝒃𝟒𝟒 .9091 .0909 .9091 .0909 

𝒃𝒃𝟓𝟓 - - - - 

𝒃𝒃𝟔𝟔 1 0 0 1 

𝒃𝒃𝟗𝟗 .5660 .4340 .5455 .4340 

 𝒃𝒃 𝟒𝟒 .5660 .4340 .5455 .4340 
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• 3.4.3.5 Bayesian Aggregation Results 
Less useful classifiers which may have missed policy acceptance thresholds can be 

combined using Bayes to improve the predictive estimates and shown in Table 11 using the same 

four tolerance levels.  A Bayesian aggregation of custom classifiers {𝑒𝑒𝑡𝑡,𝑂𝑂𝑑𝑑𝑡𝑡,𝑍𝑍𝑑𝑑𝑡𝑡} had perfect 

classification accuracy up to 0.425 system tolerance levels.  In addition, Bayesian aggregation of 

the independent classifiers {𝑏𝑏2, 𝑏𝑏4, 𝑏𝑏6} achieves perfect posterior estimation.  Moreover, candidate 

𝑏𝑏2 also achieves perfect classification in isolation or when paired with any other qualifying 

classifier candidate.  When Candidates 𝑏𝑏4 and 𝑏𝑏7 were combined at low tolerances, they achieved 

an acceptable usefulness rating using thresholds from Table 4 satisfactory 95.1% PPV with 4.9% 

FDR to meet acceptable treatment threshold requirements.  At the same level, the aggregation of 

𝑏𝑏4 and 𝑏𝑏7 saw perfect NPV and FOR posterior accuracy.     Unfortunately, as tolerance levels 

increase, errors increase for 𝑏𝑏4 and 𝑏𝑏7 aggregation, making this combination of classifier 

performance useful with the system treatment threshold settings is low.  All posterior results, 

which combine classifiers, are provided in Table 11.  As shown, when all custom classifiers are 

aggregated using Bayes Theorem, the system achieves perfect performance indicating a conclusive 

result for treatment recommendation consideration.  The combination of [𝑏𝑏3: 𝑏𝑏7]  and [𝑏𝑏3: 𝑏𝑏7: 𝑏𝑏8] 

is not useful for the experimental threshold settings of 95%PPV and 5% FDR errors.  All 

combinations of the classifiers shown in Table 11 are useful for indicating infectious log files 

among. 
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Figure 20. Post Test Diagnostic ROCs for tol = [0.5, 0.5] and 𝑝𝑝 =20% 

After gaining more insight into the usefulness of diagnostic aggregation, a more thorough 

test was conducted to see test the performance of classifier aggregation while varying the threat 

prevalence rate and tolerance levels from 0 to 1.  As shown in Figure 21, the aggregation of RF-

Biomarker candidates 𝑏𝑏2, 𝑏𝑏3 and 𝑏𝑏6 achieves the highest intrinsic accuracy and posterior 

estimation usefulness which meets network-disease treatment rules from Table 4.  The custom 

classifier aggregation [𝑒𝑒𝑡𝑡, 𝑂𝑂𝑑𝑑𝑡𝑡, 𝑍𝑍𝑑𝑑𝑡𝑡], which does not know which independent classifier is 

statistically best, comes in a close second place, achieving perfect estimation with zero errors until 

Euclidean distance tolerance levels exceed 42%.  Implying that an exhaustive search to identify 

the single best classifier may not always be necessary for low to moderate tolerance levels.  The 

aggregation of candidates 𝑏𝑏4 and 𝑏𝑏7 show perfect estimation at low tolerance levels for benign 

estimations.  When tested for NPV performance, the aggregation of 𝑏𝑏4: 𝑏𝑏7’s performance (green 

dashed) achieves approximately 90% correct estimation at all tested system levels.  Such 

performance indicates a lack of usefulness for 𝑏𝑏4: 𝑏𝑏7 aggregation combinations. 
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Table 11.  Bayesian Aggregation (tol = .05 and 𝑝𝑝 =0.2) 

 Diagnostic Combination  

Posterior Estimates of Multi-

factor Diagnostics (%) 

Benign (1) Infectious (0) 

PPV FDR FOR NPV 

𝑭𝑭𝑶𝑶 ∩ 𝑶𝑶𝑶𝑶𝑶𝑶 1 0 0 1 

𝑭𝑭𝑶𝑶 ∩ 𝒁𝒁𝑶𝑶𝑶𝑶 1 0 0 1 

𝑶𝑶𝑶𝑶𝑶𝑶 ∩ 𝒁𝒁𝑶𝑶𝑶𝑶 1 0 .0004 .9996 

𝑭𝑭𝑶𝑶 ∩ 𝑶𝑶𝑶𝑶𝑶𝑶 ∩ 𝒁𝒁𝑶𝑶𝑶𝑶 1 0 0 1 

𝒃𝒃𝟐𝟐,𝒃𝒃𝟒𝟒 1 0 0 1 

𝒃𝒃𝟐𝟐,𝒃𝒃𝟔𝟔 1 0 0 1 

𝒃𝒃𝟒𝟒,𝒃𝒃𝟔𝟔 1 0 0 1 

𝒃𝒃𝟒𝟒,𝒃𝒃𝟗𝟗 .9510 .0490 0 1 

𝒃𝒃𝟑𝟑,𝒃𝒃𝟒𝟒 .9490 .0510 .0088 .9912 

𝒃𝒃𝟑𝟑,𝒃𝒃𝟗𝟗 .6198 .3802 0 1 

𝒃𝒃𝟑𝟑,𝒃𝒃𝟗𝟗,𝒃𝒃𝟒𝟒 .6802 .3198 0 1 

𝒃𝒃𝟐𝟐,𝒃𝒃𝟒𝟒,𝒃𝒃𝟔𝟔 1 0 0 1 

 

• 3.4.3.6 Final RF-Biomarker Selection  
3.4.3.6.1 Top Three Independent Diagnostic Performers  

The top three discrimination candidates are selected as RF-Biomarkers of network-disease.  

Their independent or aggregated pre-test classification performances of the top performers are 

combined using Bayesian methods to improve the posterior classification probabilities.  In order, 

the top performers are 𝑏𝑏2, 𝑏𝑏4 and 𝑏𝑏6.  

3.4.3.6.2 Poor Performers 
Candidate 𝑏𝑏1’s performance may be improved by modifying the RF-measurement 

selection.  Here the highest value that appears for the specified ROI time was used.  As a 

consequence, the distribution appears as bimodal distribution.   

A consideration of the high and low amplitude values separately, may increase classifier 

performance and overall similarity scores.  Candidates 𝑏𝑏6 and 𝑏𝑏7’s poor performance is attributed 

again as derivatives of additional statistics that come from the amplitude measurement. These 

discoveries were not validated during this research.  



www.manaraa.com

106 

 

3.4.3.6.3 Top performers using Bayesian Aggregation 
All combinations of the custom [𝑒𝑒𝑡𝑡, 𝑂𝑂𝑑𝑑𝑡𝑡, 𝑍𝑍𝑑𝑑𝑡𝑡] diagnostic classifiers achieved acceptable 

performance level for posterior estimation of benign vs. infectious RF-Events. The method of 

classifier development mitigates the need to conduct exhaustive research which identifies the exact 

top discriminator and still achieves acceptable performance up to tolerance levels of 42% or more 

in this experiment.  A modification of the default values of 𝑍𝑍𝑑𝑑𝑡𝑡 from 2.125 up to 2.5 allows the 

aggregation to achieve performance levels that match the final RF-Biomarker aggregation 

combination.  Such a modification only increased the overall risk of acceptance by a marginal 

amount.     

 

 
Figure 21. Bayesian Aggregation %C vs. tol = [0:1] 𝑝𝑝 = 0.2, 𝑛𝑛 =150. 
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The aggregation of 𝑏𝑏2: 𝑏𝑏4: 𝑏𝑏6 was not straight forward.  Initially, it appeared that 𝑏𝑏2: 𝑏𝑏3: 𝑏𝑏6 

would perform the best however this was only observed at low tolerance acceptance levels.  Insight 

into how the system may behave over a wider tolerance range suggests initial candidate 

recommendations using statistical evidence for a low system tolerance level result does not hold 

for higher tolerance levels.  This implies that the signal to noise ratio level may significantly affect 

the diagnostic accuracy at higher noise levels. In addition, the final performance using all three 

RF-Biomarkers can be reduced to two if policy is acceptable. 

3.5 Conclusions 

 The proposed framework of integrating RF-DNA into electronic RF network 

authentication schemes to enhance logical credential verification improves posterior prediction 

usefulness of benign vs. infectious (imposter) with 100% accuracy in low to medium noise 

tolerance.   Using a majority vote and risk-based diagnostic, an infectious credential detection 

accuracy of 96.7% and 90.1% improved to 100% when Bayes Theorem is employed.  The 

proposed method does not degrade the performance of existing logical-only authentication 

schemes and can be used in an “ON/OFF” mode of operation to support multiple missions.   

The proof of concept to improve CubeSat uplink authentication was demonstrated using a 

first of kind physical simplex RF communications network using software defined radios (SDRs).  

Such radios are capable of mimicking standardized and interoperable (logically equivalent bit-

level communication) wireless transmissions.  

The experimental network was validated to successfully receive, demodulate and decode an 

intended message transmission originating from a trusted device.  After learning a policy specified 

RF-DNA credential from a trusted origin, the configured authentication device achieved 100% 1-

to-1 verification when logical and physical credentials pairs were considered.  



www.manaraa.com

108 

 

An empirical observance of RF-DNA splitting among log file traces was found to indicate 

a significant difference between a trusted RF-DNA benchmark and a simple random selection from 

a log file size of 200 received RF-Events.  Such significance is described here as rf-splitting of an 

RF-Event’s main characteristic (i.e. amplitude, frequency or phase).  Diagnostic screening of 

vulnerable CubeSat receivers would benefit from a log file screening treatment to indicate early 

warning signs of infectious access attempts originating from unauthorized origins which may lead 

to electronic network disease.  Key players such as Cyber Operators, defenders, administrators, 

IMDs users and policy makers should seriously consider the cost and benefits of incorporating RF 

measurements-based diagnostic testing to indicate early warning signs of eND. 
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IV. Interactive Trust Algorithm Extensions of Multi-Factor Authentication Schemes 

Forgiveness is relatively easy… its trusting again that is hard. (unknown)   

4.1 Overview 

A conventional interactive trust algorithm for miniature CubeSat networks employ a binary 

decision-rule for classifying ground-station uplink transactions as either cooperative or defective 

states using logical (digital bits) authentication mechanisms.  However, in an uncertain 

environment where digital impersonations are prevalent among standardized and interoperable 

electronic devices, such an algorithm lacks the capability to express the pathology of received RF 

transmissions as originating from an insider or outsider source. In this article, RF-DNA is 

integrated as a physical attributes based trust mechanism to improve logical-only network 

authentication schemes.  A consideration of physical RF evidence provides expressive insights 

into the origin integrity of unauthorized RF transmission sources.  The proposed enhanced scheme 

is validated using a con-man abuse case and is shown to significantly reduce Type-I 

misclassification errors from 84.11% to 0% when RF-DNA benchmarks are considered during 

system state classifications.  The extensions improve upon previously undistinguishable 2-state 

system by accurately classifying insider vs outsider threats using posterior estimates of RF-DNA 

credential diagnostics.  Moreover, when tracking insider threat behavior, the recommended 

response more appropriately extends uplink availability by 51.2% for non-offending transmission 

entities that share uplink resources.   
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4.2 Introduction 

Interoperability and standardization of electrically identical [68] network devices continue 

to play a significant role in maximizing communications across disparate radio frequency (RF) 

network boundaries.  However, collaboration and resource sharing demands (e.g. CubeSat 

networks) among multiple organizations correlates to increases in unauthorized RF access 

requests, which threatens the health and security of vulnerable networks [69].  An interoperable 

software-defined radio (SDR) can mimic a standardized RF device’s logical message 

transmissions, creating physical origin integrity uncertainty for claimed access credentials. 

Specifically, the physical layer of the Open Systems Interoperability (OSI) model has an inherent 

vulnerability to outsider threats, which eavesdrop, intercept, clone or otherwise conduct logical 

(binary) attacks using physical RF transmission forgeries to gain or deny access to network 

resources.  Similarly, an insider threat vulnerability such as a con-man poses a significant risk of 

going imposter, causing abnormal network behavior.  Such vulnerabilities render a specified 

authentication device as either lacking an intrusion detection and prevention capability or is 

unintentionally trained (configured) to ignore physical subtleties of statistically distinct RF origin 

cues [36].  The diagnostic pathology of RF transmission events (RF-Event) may indicate ‘early 

warning’ of infectious (dissimilar RF-Event) vs. benign (similar RF-Event) RF credential origins. 

Failure to consider the pathology of RF-Event transmissions, during authentication, may lead to 

undesirable network behavior termed network-disease (e.g. distributed denial of service (DDoS) 

or loss of uplink availability).  A multi-factor authentication framework (Figure 22) depicts a 

pairing of logical and physical RF credential information.  The steps of the framework include 

policy specification, feature selection, benchmark template development, gold standard validation 

and appropriate policy response.   
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Conventionally, Factor-1 (logical), utilizes traditional network credentials such a User, 

Device and Command ID fields.  Comparisons of new vs. known logical credentials provide a 

binary result.  This approach works well when manufactured device ID fields are distinct among 

all network devices and access control measures to software modification are in accordance with 

FCC rules for modifications [68].  Along the bottom of Figure 22, Factor-2 (physical) augments 

authentication accuracy when logical credentials test positive for a match.  Let the set  

�𝑝𝑝1𝑝𝑝2, …𝑝𝑝𝑅𝑅,𝑑𝑑1,𝑑𝑑2,…𝑑𝑑𝑅𝑅,𝑐𝑐1,𝑐𝑐2, …𝑐𝑐𝑅𝑅� respectively represent the authorized bit-level encodings for a 

claimed USER, DEVICE and COMMAND identification fields as depicted in the truth table of 

network credential templates using factor-1.  The logical credentials indicated on the top (factor-

1) of Figure 22 are identified as conventional bit-level identification fields of a transmitted 

message using some standardized transmission protocol.  Along the bottom, physical 

authentication using factor-2, of authorized message transmissions are indicated using a set of 

pathological credential templates �𝑤𝑤𝑟𝑟1,𝑤𝑤𝑟𝑟2,…𝑤𝑤𝑟𝑟𝑅𝑅,𝐹𝐹𝑤𝑤𝑟𝑟2,…𝐹𝐹𝑤𝑤𝑟𝑟𝑅𝑅� which represent statistical RF 

fingerprints of the demodulated bit-level credential fields which resulted from original observances 

of authorized 𝑤𝑤𝑟𝑟 transmissions.  Here, 𝑤𝑤𝑟𝑟 contains the physical RF modulations of bit-level 

credential region of interest fields �𝑝𝑝𝑅𝑅,𝑑𝑑𝑅𝑅,𝑐𝑐𝑅𝑅,…𝐼𝐼𝑒𝑒𝑀𝑀�.   

The logical and physical credential templates are locally stored within 𝑅𝑅𝑅𝑅𝐶𝐶’s memory to 

enable self-evident verification for future multi-factor authentication.  As future instances of 

waveform 𝑤𝑤𝑟𝑟 occur for authentication by 𝑅𝑅𝑅𝑅𝐶𝐶, two factors are considered for authentication.  

Using Factor-1, 𝑤𝑤𝑟𝑟 is demodulated for bit-level credential interpretation, but held temporarily until 

the results of Factor-2 can be determined.  Using Factor-2, 𝑤𝑤𝑟𝑟 is sampled according to parameters 

indicated by the iMkr  (start and stop sampling points for RF fingerprinting) for a times-series RF 

transmission event. 
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An index parameter determines the sampling start and stop points of a waveform’s region 

of interest (ROI) indicated as the 𝑅𝑅𝑀𝑀𝑘𝑘𝑟𝑟 of 𝑤𝑤𝑠𝑠. The index dictates the start and stop points of an 

event, which compares an RF-Event’s newly extracted RF fingerprint to a trusted RF benchmark 

template. Each destination device may contain different credentials according to policy 𝑝𝑝𝑖𝑖.  If a 

statistical fingerprint of an RF-Event matches a claimed benchmark template, the signal is allowed 

to pass forward to the next checkpoint for higher layer authentication processing if necessary.  

Table 18 describes multi-factor (factor-1 and factor-2) classification for policy response. 

 

 

 Figure 22. Multi-factor verification using logical and pathological credential pairs  

This research aims to assess the impact of a 4-State classification system extension using 

RF fingerprinting has on the performance of a 2-State system when RF fingerprinting is off.  A 

Bayesian aggregation of pathological RF-Biomarkers and logical evidence pairings aim to improve 

the posterior classification of credential validation using a distributed consolidated trust managed 

system (CTMS) [1].   
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The CTMS manages the trustworthiness of uplink access requests originating from fixed 

ground stations [21] using logical authentication of a specified RF source identification 𝐼𝐼𝑒𝑒𝑇𝑇 

credential field (i.e. AuthCount).  A representative CubeSat satellite communication (SATCOM) 

network simulation, considers like-manufacturer and like-model SDRs, employs an interactive 

trust value (ITV) field mechanism to assess the dynamic reputation trust and authenticity of a 

claimed credential.  Previous work using RF-DNA fingerprints [16] [18] [51] [52] extends RF 

fingerprinting of invariant protocol message fields (e.g. preamble, postamble, midamble) to 

include an entire fixed or invariant command message. Such an extension provides a feasible way 

to consider physical RF-Event information during authentication when logical-only authentication 

is uncertain.  Dimensionality reduction improves the selection of ‘useful features’ using sensitivity 

analysis [50] [70]. 

4.2.1 Background & Related Works 

A. Trust 

In social or electronic communities, trust is a rating assigned by a perceiving (receiver) 

agent indicated by ′𝑑𝑑′ with respect to a transmitting source agent indicated by ′𝑟𝑟′ for a specified 

time ′𝑡𝑡′ [71].  An RF pathology authenticator (device 𝑑𝑑) is defined as having physical RF origin 

credential templates of statistically trusted RF-Events emplaced in local memory which enables 

self-evident origin verification as suggested in Rasmussen’s work [25].  A policy 𝑝𝑝𝑖𝑖 describes the 

desirable information flow from 𝑟𝑟 to 𝑑𝑑 over a communication link’s path.  Link 𝑝𝑝 forms a point-

to-point (P2P) path from 𝑟𝑟 to 𝑑𝑑 as (𝑟𝑟 𝑑𝑑) if a pairing response exists which specifies the 

directional communication path’s designated receiver for credential verification by 

authenticator/observer  𝑑𝑑.   
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The term con-man is adapted from [72] to indicate an abuse case profile when 𝑟𝑟𝑎𝑎 takes 

advantage of 𝑑𝑑 during a series of electronic interactions.  Such a case is best described as an 

insider-threat situation when an authorized communication path exists between 𝑟𝑟 and 𝑑𝑑.  During 

such transactions the con-man presents acceptable credentials that are contained within 

standardized RF modulations of message ′𝑚𝑚′ that lead to a classification of Cooperation ′𝑅𝑅′ 

between 𝑟𝑟𝑎𝑎 and 𝑑𝑑.  Such cooperation may lead to the execution of infectious payload data contained 

within the body of 𝑚𝑚 transmitted by 𝑟𝑟𝑎𝑎.  Then, when it comes to a high –risk interaction, the con-

man (𝑟𝑟𝑎𝑎) will defect.  That is, 𝑟𝑟𝑎𝑎 initiates a malicious (e.g. Trojan-horse) transaction that attempts 

to defraud 𝑑𝑑.  The trust rating about the reputation of 𝑟𝑟𝑎𝑎 updates by 𝑑𝑑 following fraud detection 

and a transactional state classification of Defection ′𝑒𝑒′ occurs.    At this point, the con-man either 

attempts to regain lost trust or stop future communication with 𝑑𝑑.  Conventionally, there are ‘θ’ 

consecutive 𝑅𝑅 transactions for each 𝑒𝑒.    The con-resistant interaction trust algorithm is provided 

in Table 12 [73].  To regain trust, 𝑟𝑟 will again initiate several transactions that are 𝑅𝑅 in nature.  

Here, 𝑟𝑟 hopes to deceive 𝑑𝑑 again by masking its true infectious intentions by presenting logically 

correct message credentials while inserting some unauthorized payload.  Several well-known con-

man attack patterns are recreated in a simulated ecosystem using attack profiles of θ = 5, 10, 15, 

20, 25, 30, 35 and 40. 

Table 12. Con-Resistant Interaction Trust Algorithm [72] 

Cooperation Defection 
 

T′sd = Tsd +  α(1− Tsd)     (1) T′sd =
Tsd + β

1 −min(|Tsd|, |β|)     (6) 𝑇𝑇𝑠𝑠𝑑𝑑 > 0 

T′sd =
Tsd + α

1 −min(|Tsd|, |α|)    (2) T′sd = Tsd +  β(1− Tsd)      (7) 𝑇𝑇𝑠𝑠𝑑𝑑 < 0 

T′sd = α           (3) β = �β − γd(1 + β)�         (8) 𝑇𝑇𝑠𝑠𝑑𝑑 = 0 

α = min(α + γc(α0 − α),α0)   (4) γd = 1 e� ∗ |Tsd| =
|Tsd|

e
         (9)  

γc = 1 − |β|     (5) α = 1 − |β|           (10)  
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  In such profiles, the con-man will conduct a series of θ transactions that would be 

classified as 𝑅𝑅 and then immediately initiate a transaction defection classification.  A rating of '0' 

indicates the absence of trust. Initial trust ratings begin at '0' with adjustments occurring throughout 

directed session interactions from  𝑟𝑟 to 𝑑𝑑  [71].  As link session interactions occur, trust ratings are 

strengthened or weakened for the next (t +1) transaction period and is based on the perspective of 

authenticator 𝑑𝑑. An authenticator (device 𝑑𝑑) is defined as having physical RF attribute benchmarks 

of statistically trusted RF-Events that are emplaced in its local memory to enable self-evident RF 

origin integrity as suggested by Rasmussen  [25].  Previous research suggests, such a con-man 

attack may continue indefinitely without detection if θ is sufficiently high [74]. 

B. A Basis for Collection of Trusted RF-Event Transmission States (𝒘𝒘𝒘𝒘)  

• Policy Specification 
A summary of general acceptance policies appears in Table 13.  An oracle of acceptance 

for naturally occurring RF emission similarity development maps the combination of useful logical 

and physical credentials for RF communication (e.g. e-CFR identification field).  Oracle 

specifications include acceptable RF-measurements, receiver configuration, RF transmission 

similarity tolerances, fixed vs. mobile stations and acceptable noise.  The first property implies an 

existence of natural RF analog subtleties that exist as distinct electronic device transmissions [3] 

[4].  The sources of fixed and authorized transmitters influence an RF fingerprint and must remain 

distinct from all other (e.g. mobile) sources during natural RF generation to satisfy Property-1. 

Secondly, the physical attributes of original (benchmark templates) RF-Events must be inherent 

among all similar interoperable devices (e.g. emissions made in the ultra-high frequency range) 

[29] [75].   
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Thirdly, new RF-Events must be repeatable to enable consistent RF-measurements. 

Property-4 suggests statistically significant RF dissimilarity is indicates a risk of infectious 

credential acceptance.  A self-evident marker inherently describes the existence of the RF-Event’s 

similarity level without a need for additional interpretation. Receiver 𝑑𝑑 owns self-evident markers 

of specified credential of 𝑟𝑟 when all properties of Table 13 occur.  There is currently no 

standardized method toward feature selection in an RF networking ecosystem.  The aim of policy 

development is to provide early warning cues of network-disease. 

• Feature Selection 
The use of minutia detail classification employs classification across composite features 

and may suffer from poor detail selection when new samples are compared to database templates 

[54] [55].    In biometrics, there are an estimated 150 standardized indicators called minutia detail 

used in human fingerprinting [9] techniques but none in electronic RF fingerprinting.  A Biomarker 

is defined as “a characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic response to therapeutic 

intervention” [40] [41].  An RF-Biomarker is a physical or intrinsic characteristic of an electronic 

communication device’s RF emissions that indicates abnormal process or response when the origin 

integrity of RF transmissions are suspect for causing network-disease.  The introduction of local 

RF-Biomarker measurement and analysis aims to augment diagnostic utilities employed by 

network troubleshooters to defend against abnormal behavior [76]. 
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Table 13. Desirable Properties of Unique RF Features  
Desired Description 

Property-0: An Oracle or policy of RF evidence acceptance has been pre-defined as truth. Defining a specific 
authentication device’s measurement of RF fingerprint can be used as a truth reference. 

Property-1: An original RF-Event must be natural (i.e. analog or continuous) in its immediate existence in time 
and space rather than existing as a derived logical (e.g. binary or digital) interpretation. 

Property-2:  Specified feature attributes of the physical event must be inherent among similar RF  emission (e.g. 
Type III frequencygenerating transmitters [77]. 

Property-3: The extractable features of RF generating circuits must be repeatable and evident from the 
occurrence of the natural event stimuli. 

Property-4: A sample obtained from the RF-Event must provide evidence that its features are statistically 
significant to support known and consistent event measurements. 

    

• Benchmark Development 
A benchmark test applies reference truth dataset for quantitative performance measurement 

commonly referred, in the medical community, as a gold standard (GS) [58]  [39]. A gold standard 

is a source of information, which tells us the statistically true condition status of a received RF-

Event transmission using a diagnostic result [42]. The strength of a benchmark is a measure of 

self-similarity, where high similarity indicates an RF signature that is statistically consistent 

between samples.  

• Gold Standard Validation (Verification) 
Fingerprint verification for people is very similar in concept for electronic devices and 

integration of various modalities provides automatic authentication and verification [9].  A 

Bayesian-based RF-DNA fingerprint filter is inspired from spam filters [32]  [45] and applies as a 

1-to-1 credential verification scheme, which compares newly claimed RF-Events to a known 

benchmark or gold standard  [39] for verification.   

• Treatment Response  
An optimal system configuration considers the policy and goals of the end-user entity as 

well as trade-offs.  This article demonstrates a proof of concept and leaves optimization for future 

research.  However, some recommendations provide system tuning in Section IV for general 

operational risk ecosystem consideration. 
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C. A Representative SATCOM Network 

Duncan employs a ‘One-Factor, Two-state’ classification scheme according to 𝑑𝑑’s 

assessment of a claimed credential’s transactional classification and the current ITV level using 

logical-only authentication mechanisms.  An ITV rating about 𝑟𝑟, from the perspective of 𝑑𝑑 is 

closed over the interval [-1, 1] where a rating of '-1' indicates a complete distrust of 𝑟𝑟 while a rating 

of '+1' indicates complete trust in transactions originating from 𝑟𝑟. An initial rating of '0' indicates 

the absence of trust [71].  In an abuse case, the con-man conducts a series of transaction 

classifications of cooperation ′𝑅𝑅′ or defection ‘𝑒𝑒’ by authenticator 𝑑𝑑.  Based on the value of the 

ITV during a session, Duncan employed a three level policy response scheme where he arbitrarily 

selected a policy-based threshold limit of -0.5 as the lowest acceptable ITV rating that could occur 

during a series of 200 transactions.   

A Level-1 response is referred to as “Trust Management Event Logging Only,” where the 

response actions of the authenticating device includes a comparison check of the command 

authentication count upon receipt of a new RF-Event and the associated ITV is calculated for the 

authentication count marker. Once the ITV for authentication count reaches the decision-rule’s 

distrust threshold, an alert is logged indicating excessive invalid attempts.  A Level-2 response, 

termed “Trust Management Event Logging and Prevention,” includes the responses of a Level-1.  

However, once the ITV for authentication count reaches 𝑇𝑇ℎ command processing halts for 

anonymous users and an alert is logged indicating excessive invalid command attempts.  A Level-

3 policy response, “Trust Management Event Logging, Prevention and Recovery,” include 

responses of Level-1 and Level-2.  Additionally, A Level-3 response halts command processing 

for anonymous users and an alert is logged indicating excessive invalid command attempts.    
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A legitimate ground station must unlock satellite command processing originating from 

uplink transmissions using the CTMS’s onboard logical credential trust mechanism to authenticate 

the unlock sequence and resume commanding operations. 

D. Discovering Evidence of Distrustful RF Transmission Behavior 

A strategy for con-man attack, denoted as SCA(Ɵ), remains trustworthy by choosing Ɵ to 

be strictly greater than the interactions that precede the attack despite being a con-man [72]. The 

con-man repeats the attack pattern after a series of Ɵ favorable session interactions.  Yu and Singh 

introduced a simple trust algorithm extension to mitigate con-man behavior [2], providing a simple 

binary result per transaction.  To assist in mitigating this problem, [72] extends the Con-Resistant 

Trust Model where known patterns of con-man behavior exist. In the scheme, 𝑟𝑟 interacts with 𝑑𝑑 

in a favorable number of session iterations before committing a 𝑒𝑒 interaction.  Unfortunately, both 

extension schemes discard critical information (physical RF-measurements), about the physical 

attributes of fixed transmitters, instead logical-only (demodulated and decoded bits) credential 

verification is employed.   

The proposed scheme enhancements aims to provide more expressive feedback to network 

tasked with defending against insider and outsider threats that are capable of mimicking logical 

credentials at the bit-level.  In order to meet this objective, the article aims to enhance existing 

network authentication mechanisms employed by the CTMS using multiple pathological or 

physical event based mechanisms (i.e. localized components of composite RF-DNA fingerprints) 

to enhance network defense in Cyberspace [1] [19] [24] [20].  Similar to reputation theory as 

described by Sabater and Sierra in [74], an agent that has a specified relationship with another 

agent is more likely to forgive even after being deceived [72].  Forgiveness bounds the limits of a 

penalty β by some experimentally determined upper and lower bound.   
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We refer to this term as the fingerprint forgiveness factor indicated by (Φ) and is closed 

over the interval [β, 1].  The electromagnetic interference effects that RF-Biomarkers experience 

during uplink propagation in a SATCOM ecosystem may be negligible for UHF transmissions 

using FM modulated signals [15].  

4.3 Methodology:  2-Factor RF Credential Authentication  

• Experimental Setup (Hardware Software) 
The representative experimental CubeSat uplink configuration is depicted in Figure 23 as 

the wired and wireless point-to-point (P2P) communications network. Each circuit component is 

labeled with a letter and role for representative icon reference. For example, the device used to 

generate the initial message for collections is shown as (label | description) PC1| PC1: msg 

(message) generator.  Each HP Zbook 15 laptop in Figure 23a/b/c (𝑇𝑇𝑅𝑅𝑇𝑇), (𝑇𝑇𝑅𝑅𝐵𝐵) , Figure 23f/g (𝑅𝑅𝑅𝑅𝑅𝑅) 

have 32GB RAM, 500GB DDRL 4DM, 5400 RPM, integrated NIC, I Core i7-4800MQ processor 

and are identically configured with LabVIEW 2014 with RT Modulation Tool Kit, Math Script, 

Windows 10, Microsoft Office 2013, Matlab 2015a, 2016a and Jump Pro 12.1.    Each physical 

circuit has physically distinct hardware, cables and antennae and could transmit or receive. The 

ground station front end transmitters are represented by 𝑇𝑇𝑅𝑅𝐴𝐴 and 𝑇𝑇𝑅𝑅𝐵𝐵 while the CubeSat receiver 

is represented by   𝑅𝑅𝑅𝑅𝐶𝐶.  The RF radios are randomly selected from National Instrument model 

USRP-2922 software defined radios (SDRs) that differ by serial number only.   

Figure 23a and Figure 23b represent that baseband logical message generator (msg), which 

transmits telecommands to the front end transmitter 𝑇𝑇𝑅𝑅𝐴𝐴 in Figure 23c (USRP 2922) for final 

modulation onto the uplink medium.   Devices 𝑇𝑇𝑅𝑅𝐴𝐴 and 𝑇𝑇𝑅𝑅𝐵𝐵 (red USRP 2922 in Figure 23c) are 

the transmitters under test.  GS1 is defined as the benchmark validation test for 𝑇𝑇𝑅𝑅𝐴𝐴 emissions as 

observed by receiver (authenticator) 𝑅𝑅𝑅𝑅𝐶𝐶.   
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𝑇𝑇𝑅𝑅𝐴𝐴’s RF emissions are collected for signature profile benchmarking by 𝑅𝑅𝑅𝑅𝐶𝐶 based on 

predefined policy specifications.     𝑇𝑇𝑅𝑅𝐵𝐵 (red) represents an arbitrary opponent transmitter that 

attempts to impersonate the credentials of 𝑇𝑇𝑅𝑅𝐴𝐴. The goal of 𝑅𝑅𝑅𝑅𝐶𝐶 is to provide decision-support for 

the origin integrity of arriving telecommands that claim to originate from 𝑇𝑇𝑅𝑅𝐴𝐴.  Upon receipt of 

new RF transmissions, 𝑅𝑅𝑅𝑅𝐶𝐶, compares the logical and pathological (RF-DNA) credentials to 

known benchmarks previously known about 𝑇𝑇𝑅𝑅𝐴𝐴.  When both credentials meet arbitrary threshold 

requirements for acceptability as shown in Figure 23h, the paired RF-Event’s credentials are 

classified as benign for causing eND.  When either credential fails to meet acceptability thresholds, 

the RF-Event is classified as infectious for causing eND. 

A 2-FSK modulation scheme is used to transmit msg over FM using a carrier frequency of 

449.9MHz.  A 100kHz offset is set from the center frequency of 450MHz.  Each pulse duration is 

approximately 6.399ms.  The receive circuit had a tunable bandwidth selector that was set to 

20kHz and detected each pulse using a tunable triggering mechanism based on the magnitude of 

the amplitude.  The FSK deviation was set to 1. 

• Experimental Focus 
Classifier 𝑅𝑅𝑅𝑅𝐶𝐶 trains on 1100 trusted RF-Events from 𝑇𝑇𝑅𝑅𝐴𝐴 while transmitting an authorized 

command (message-1) to compose a trusted RF-DNA fingerprint benchmark template.  For each 

RF-Event pulse (Figure 23d) successfully received by 𝑅𝑅𝑅𝑅𝐶𝐶 (Figure 23g), the RF-DNA is extracted 

from 10 fixed and equally spaced sub regions plus the full wave regions using complex real and 

imaginary parts of the analog waveform.  This brings the total number of distinct RF-DNA 

contained within a complete collection to ([8 features] * [22 sub-regions]) 176 RF distinct native 

attributes for possible selection as RF-Biomarkers of eND.   
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The same RF-DNA fingerprint classifier was then tested using 150 new claimed RF-Events 

for 𝑇𝑇𝑅𝑅𝐴𝐴 while transmitting from the same authorized state for benchmark verification.  The process 

repeats for three additional commands for 𝑇𝑇𝑅𝑅𝐴𝐴 to provide a total of four benchmarks and four test 

sets for verification.  This procedure repeats for 𝑇𝑇𝑅𝑅𝐵𝐵.  𝑇𝑇𝑅𝑅𝐴𝐴 is the trusted source, while 𝑇𝑇𝑅𝑅𝐵𝐵 

arbitrarily assigned as untrusted.  The authorized messages from 𝑇𝑇𝑅𝑅𝐴𝐴 is arbitrarily designated as 

Benign, when USER-1 transmits from 𝑇𝑇𝑅𝑅𝐴𝐴.  We designate all commands from 𝑇𝑇𝑅𝑅𝐵𝐵 and ‘command-

2’ from 𝑇𝑇𝑅𝑅𝐴𝐴 as Infectious.  Additionally, policy ′𝑝𝑝𝑖𝑖′ specifies 𝑇𝑇𝑅𝑅𝐴𝐴 as having 'command-1' 

authorization only. 
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Figure 23. Physical network diagram for Experimentation 

• Abuse Case Description 
  In the abuse case experiment, a Bayesian RF-DNA verification filter classifies a new set 

of 43 benign and 107 infectious (not-benign) RF-Event samples from two physically distinct 

SDRs.    To establish a common reference for test validation, all transmitted RF-Events are 

logically identical (i.e. the logical/binary decoded bit streams are the same).    
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A simple random selection of infectious and benign RF-Events replaces defective 

(infectious) transactions ‘0’ using a well-known con-man attack profile 𝑆𝑆𝑅𝑅𝑇𝑇(5).  A comparison of 

the final dataset reference and known benchmark levels provides the resulting classification match 

scores. Initialization settings appear in Table 14.  An abuse case adaptation from Duncan sets the 

first 49 transactions of a truth reference dataset as legitimate command transmissions with 10% bit 

errors.  In the truth, the original “all-benign” dataset receives a simple random sample replacement 

of the 10% error occurrences as 𝑇𝑇𝑅𝑅𝐴𝐴 ‘command-2’ transmissions to simulate noise (i.e. bit errors 

instead of manmade).  The indexed replacements were; [5;11;18;22;26;37].  The index 

replacement’s truth column updates to truth condition code = 2.  Next, for transactions 50 -150, a 

simple random sample of RF-Events are selected from 𝑇𝑇𝑅𝑅𝐵𝐵’s pool of ‘command-1’ and ‘command-

2’ RF-Event samples.  Both simple random samples are then arranged to satisfy the abuse case 

sequence used in Duncan’s research, where the first 49 transactions are considered as all 

Cooperative in nature in a 10% BER ecosystem.  The count of each command is found in Table 

15.  The attack occurs at transaction 50 and continues until the end of the sequence of samples.  

RF-Events for command-1 from 𝑇𝑇𝑅𝑅𝐵𝐵 are as follows;  

[52;55;56;59;60;61;66;67;70;72;73;76;78;80;82;83;84;85;87;90;92;94;100;101;102;104;110;115;116;118;119;1
24;125;126;128;130;131;132;133;134;135;137;139;140;141;142;143;145;147;148;149]. 

Moreover, 𝑇𝑇𝑅𝑅𝐵𝐵1 replacements are enumerated in the temp truth reference column as 

number ‘0’. 𝑇𝑇𝑅𝑅𝐵𝐵2 ‘command-2’ files are also simple random selections from a population of 500 

samples.  The gold standard (GS) file index values for these commands are; 

[50;51;53;54;57;58;62;63;64;65;68;69;71;74;75;77;79;81;86;88;89;91;93;95;96;97;98;99;103

;105;106;107;108;109;111;112;113;114;117;120;121;122;123;127;129;136;138;144;146;150. 
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Finally, the GS file’s truth column was created such that all RF command transmissions 

originating from 𝑇𝑇𝑅𝑅𝐴𝐴 ‘command-1’ retained the value of ‘1’ to indicate a true benign status, while 

all other commands were given a value of ‘0’ to indicate the truth status as infectious.  The con-

attack SCA(5) began at transaction 50 and continued until the end of the series of transactions.  

This sequence represents the final gold standard or truth reference of infectious vs. benign 

classifications.   

Table 14. System Parameter Settings 
System Parameter Settings 

 “ON” “OFF 
𝜶𝜶𝒘𝒘𝑶𝑶𝒔𝒔𝒊𝒊𝑶𝑶= 0.1 0.1 
𝜶𝜶 = 𝛼𝛼 𝛼𝛼 

𝑩𝑩𝑪𝑪𝑩𝑩𝑪𝑪𝒘𝒘 = 𝐵𝐵𝑀𝑀𝑛𝑛𝑝𝑝𝑟𝑟 = (𝐵𝐵𝑀𝑀𝑛𝑛𝑝𝑝𝑟𝑟 + 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑃𝑃𝑡𝑡) - 
𝛃𝛃𝒘𝒘𝑶𝑶𝒔𝒔𝒊𝒊𝑶𝑶 = -0.4 -0.4 
𝛃𝛃𝒊𝒊𝑴𝑴𝑭𝑭 = [1.0, 1.25, 1.5, 1, .𝟗𝟗𝟓𝟓, 2] - 
𝛃𝛃𝒊𝒊𝑻𝑻𝑴𝑴 = [2,𝟐𝟐.𝟐𝟐𝟓𝟓, 2.5, 2.75, 3] - 
𝜷𝜷 = 𝛽𝛽 𝛽𝛽 
𝚽𝚽 = [1.0, 0.75,Φ𝐻𝐻𝐻𝐻,Φ𝐿𝐿𝑇𝑇, 25, ] - 
𝚽𝚽𝑳𝑳𝑶𝑶 = 0.9451 - 
𝚽𝚽𝑯𝑯𝑹𝑹 = 0.97 - 
𝐃𝐃𝑶𝑶 = 0.05 - 
𝐎𝐎𝑶𝑶𝑶𝑶 = 5 - 
𝐙𝐙𝑶𝑶𝑶𝑶 = 2.125 - 

 

Table 15.  True Status of RF Credentials  
RF 

Origin 
(Device / 

Command) 

Logical 
Credential  
Similarity 

 [Y/N] 

Pathological 
Credential  
Similarity  

[Y/N] 
 [L=1]  [L=0]  [P=1]  [P=0] 

𝑇𝑇𝑑𝑑, 𝑐𝑐1 43 0 43 0 
𝑇𝑇𝑑𝑑, 𝑐𝑐2 0 6 0 6 
𝐵𝐵𝑑𝑑 , 𝑐𝑐1 51 0 0 51 
𝐵𝐵𝑑𝑑 , 𝑐𝑐2 0 50 0 50 
Totals 94 56 43 107 

 

• Factor-1 Logical (L) Credential Authentication Mechanism 
The monitoring of a simple authentication counter (AuthCount) field is the logical 

credential benchmark.  
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• Factor-2 Physical (P) Credential Authentication Mechanism 
Using a physical attribute-based mechanism 𝑅𝑅𝑅𝑅𝐶𝐶 compares the physical variations that 

naturally exist in RF emissions of a telecommand messages. Additionally, the trusted sets of 𝑤𝑤𝑠𝑠 

events satisfy all properties of Table 13. We propose a physical enhancement to logical security 

mechanisms that extends previous work in the SATCOM operational ecosystem [14] [1] for LCP 

based authentication [76].  

• Policy Response Decision Rules 
For consistency, Duncan’s 𝐿𝐿𝑒𝑒𝐷𝐷𝑒𝑒𝑝𝑝 − 3 policy response scheme in the CTMS is adopted [72] 

[1] where the trust threshold is[𝑇𝑇ℎ = −0.5]. Con-man attack profile SCA(20) analysis provides 

additional details on the con-resistant algorithm extensions. 

• Verification Metrics 
In the 2-state interactive classification scheme, RF fingerprinting augmentation is “OFF” 

and an interactive transaction classification test result of 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑅𝑅 occurs when a claimed RF-

Event’s decoded logical credential field matches the benchmark logical bit-pattern when 

compared.  When the decoded credential field fails to match the benchmark identification bit-

pattern, a classification of 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒 occurs.  In the 4-State system when RF fingerprinting is 

“ON”, the logical and physical credential information is considered in state classification.  As 

uplink transactions occur, a classification 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑅𝑅 occurs when both diagnostic results test 

positive.  That is, the credential’s decided bit-pattern matches the template and the physical RF-

measurements extracted from the RF-Event that contained the modulated message also meets 

origin similarity acceptance levels.  Here, a system state classification of 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑅𝑅 is equivalent 

to a benign indication of a network-disease causing transaction. A system state classification 

𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒 occurs when a received RF-Event tests negative for both logical and physical RF 

credential acceptance, which indicates the highest risk of credential forgery.   
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A system state classification 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸 occurs when a received RF-Event tests positive for 

logical credential authenticity, but tests negative for possessing acceptable RF origin similarity 

levels, an indicator of outsider (foreign device) threat attempts. A system state classification 

𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 occurs when a received RF-Event tests negative for logical credential authenticity, but 

tests positive for possessing physical RF credentials, which suggest high RF origin similarity. 

𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 indicates an insider threat or perhaps an SDR that mimics the physical and logical 

characteristics of a trusted transmitter.  When neither of the diagnosed credentials match, the 

interaction state classification is 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒 and is functionally the same as a 2-State classification 

system [71]. 

Using the 2-State classification system, we can assess the diagnostic accuracy of credential 

verification accuracy.  The true positive classification occurs when [𝐿𝐿 = 1 & 𝑒𝑒 = 1].  A TN 

occurs when [𝐿𝐿 = 0 & 𝑒𝑒 = 0].  That is, when a claimed RF-Event’s credentials do not match a 

diagnostic template and the true condition of the RF-Event is infectious.  A misclassification error 

occurs when the logical diagnostic test and true condition status are not the same.  A false positive 

occurs when [𝐿𝐿 = 1 & 𝑒𝑒 =  0].  A false negative occurs when [𝐿𝐿 = 0 & 𝑒𝑒 =  1].  Lower errors 

are better.  Diagnostic accuracy for the 4-State system is similar.  A  𝑇𝑇𝑃𝑃 = 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛 classification 

occurs when [𝐿𝐿 = 1 & 𝑃𝑃 = 1] and [𝑒𝑒 = 1].  A 𝑇𝑇𝑒𝑒 = 𝑅𝑅𝑛𝑛𝑓𝑓𝑒𝑒𝑐𝑐𝑡𝑡𝑅𝑅𝑀𝑀𝑝𝑝𝑟𝑟 classification occurs when 

[𝐿𝐿 = 0 & 𝑃𝑃 = 0] and [𝑒𝑒 = 0].  A FP error occurs when [𝐿𝐿 = 1 &𝑃𝑃 = 1 &𝑒𝑒 = 0].  A FN occurs 

when [𝐿𝐿 = 0 & 𝑃𝑃 = 0] & [𝑒𝑒 = 1].  When classifying the system state, a state interaction 

classification of 𝐸𝐸 occurs when [𝐿𝐿 = 1 & 𝑃𝑃 = 0] despite the true condition of the RF-Event.  A 

state class 𝐹𝐹 occurs when [𝐿𝐿 = 0 & 𝑃𝑃 = 1] regardless of the true RF-Event’s credential status.   
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The state interaction classifications are used in conjunction with the ITV during network 

monitoring and response activities.    For each system state classification, the con-resistant 

algorithm and the new extensions are applied to update the ITV. 

• Extensions to Con-Resistant Algorithm  
 Adapting the characteristics of conventional con-resistant trust models, “trust is hard to 

earn but easy to lose” [72] [74], we extend the con-resistant algorithm by introducing a state 

classification-based update schema.  The extensions provide state specific considerations to deal 

with regaining trust or penalty severity for distrust.  A forgiveness factor Φ extension reduces the 

penalty (𝛽𝛽) for a perceived 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 interaction classification based on agent 𝑶𝑶’s trust of the 

received RF-Event’s logical and physical credential testing.   

A 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 state, assumes a higher risk of network-disease if the RF-Event is accepted as 

authentic.  Similarly, the reward increment size of 𝛼𝛼 can also be modified to support targeted 

classes that best support operational objectives.  

Table 16.  Con-resistant interaction trust algorithm  State Extensions  
Two Cooperation (C) Defection (D) 
Four C* E F D* 

Ex
te

ns
io

ns
 𝒔𝒔 = 𝒔𝒔 ∗ (𝑩𝑩𝑪𝑪𝑩𝑩𝑪𝑪𝒘𝒘) Φ = β𝑀𝑀𝑀𝑀𝐷𝐷 Φ = Φ[𝐻𝐻𝐻𝐻,𝐿𝐿𝑇𝑇] Φ = β𝑀𝑀𝐴𝐴𝑀𝑀 

𝜶𝜶 = 𝑪𝑪𝒊𝒊𝑩𝑩(𝜶𝜶 + 𝜸𝜸𝒄𝒄(𝜶𝜶𝟎𝟎 − 𝜶𝜶),𝜶𝜶𝟎𝟎)  (𝟒𝟒) β = β𝑠𝑠𝑡𝑡𝑎𝑎𝑃𝑃𝑡𝑡 ∗ Φ  𝛽𝛽 = �𝛽𝛽 − 𝛾𝛾𝑑𝑑(1 + 𝛽𝛽)�𝛷𝛷 𝛽𝛽 = 𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑃𝑃𝑡𝑡 ∗ 𝛷𝛷  

𝜷𝜷 = 𝜷𝜷 𝛼𝛼 = 1− |𝛽𝛽|     (10) 𝛼𝛼 = 1− |𝛽𝛽|     (10) 𝛼𝛼 = 1− |𝛽𝛽|     (10) 

 

Integrating RF fingerprinting augmentation mechanisms for forgiveness into (8) above 

from Table 12, the discounted penalty for potential con-man behavior is,  

𝛽𝛽 = �𝛽𝛽 − 𝛾𝛾𝑑𝑑(1 + 𝛽𝛽)�𝛷𝛷 ,                                                                           (11) 
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If d forgives distrustful behavior and maintains an otherwise higher ITV.  Similarly, Φ 

modifications for forgiveness for each penalty state as follows 

𝛷𝛷 = �
𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀          𝑅𝑅𝑓𝑓 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 𝑒𝑒 [𝐿𝐿 = 0,𝑃𝑃 = 0]
𝛽𝛽𝑀𝑀𝑀𝑀𝐷𝐷          𝑅𝑅𝑓𝑓 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 𝐸𝐸 [𝐿𝐿 = 1,𝑃𝑃 = 0]
𝛷𝛷𝐻𝐻𝐻𝐻|𝐿𝐿𝑇𝑇       𝑅𝑅𝑓𝑓 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 𝐹𝐹 [𝐿𝐿 = 0,𝑃𝑃 = 1]

 ,                                                     (12) 

Where β𝑀𝑀𝐴𝐴𝑀𝑀 represents the largest penalty for distrustful transactions that classified as 𝑒𝑒. 

In case 𝐸𝐸, a receiver has a valid logical credential, yet the RF fingerprint levels are unacceptable, 

which leads to a penalty that is higher than the penalty starting value; yet less than the maximum 

penalty.  When logical credential claims fail, yet contain high RF origin similarity acceptance 

levels, the transaction may be given forgiveness because it indicates an insider threat that may be 

acceptable if the cost of shutting down uplink access is high.  In case 𝐸𝐸, the system logs the 

transaction as described in a 𝐿𝐿𝑒𝑒𝐷𝐷𝑒𝑒𝑝𝑝 − 3 responses above.  If capable, 𝑑𝑑 provides target blocking 

recommendations for a specific RF target without creating a denial of service to all non-offending 

transmission sources.  Following a 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸 classification, an update is made such that Φ =

β𝑀𝑀𝐴𝐴𝑀𝑀 adjusts the penalty step size before calculating the ITV. A new Bonus parameter increases 

the step size of α following an interaction state classification of 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑅𝑅 as, 

𝑎𝑎 = 𝑎𝑎 ∗ (𝐵𝐵𝑀𝑀𝑛𝑛𝑝𝑝𝑟𝑟).                                                                               (13) 

The RF-DNA-based authentication mechanism improvements apply when augmentation is 

“ON” and the forgiveness factor is experimentally determined using an exhaustive search. The 

original 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑅𝑅 and 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒 states are retained from previous work, while states E and F 

are added to improve indications of insider and outsider network threats.  A summary of ITV 

updates following each system state classification is in Table 16 below. 
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4.4 Results 

A. 4-State vs. 2-State System Classifications of Con-Resistant Models 

The upper and lower limits of forgiveness (Φ) appear in Table 19 for each con-man attack 

profile were experimentally determined with the aim of enabling tracking of authorized users while 

increasing uplink availability to non-offenders. Where Φ = 1 and a Case 𝐸𝐸 classification occurs, 

the upper limit of Φ𝐻𝐻𝐻𝐻 meets or exceeds these objectives in the following ways; first, the overall 

ITV never drops below an average trust value that is less than the current threshold of -0.5 which 

prevents the link from shutting down. Secondly, a new threshold can be expressed (e.g. -0.4) as 

the new threshold to lock out specific users that are participating in seemingly defection 

transactions.  

150 interaction classifications occur for each independent classifier and all results are 

accounted for when RF-DNA mechanisms are “ON” and “OFF”. For classifier 𝑒𝑒𝑡𝑡 there are 13 

classifications for 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸 and 16 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 classifications of the session interactions. 

Compared to the 2-State classification scheme, 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒 = 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 in a 4-State system; 

however, the response policy of the 2-State system classifier lacks expressiveness to discern 

context of potential insider vs. outsider threat for enhanced situational awareness. As an 

unintended consequence the 90 interactions using the uninformed 2-State system allows potential 

RF source origin integrity forgery vulnerabilities to persist at the physical layer of the network 

boundary’s access point.  Classifiers 𝑂𝑂𝑑𝑑𝑡𝑡 and 𝑍𝑍𝑑𝑑𝑡𝑡 improve on the specificity of a perceived insider 

threat (correctly) but rejects three benign (legitimate) credentials as infectious (imposter) RF-

Events.   
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When the goal is to stop truly malicious or infectious credential acceptance, the 

independent RF classifiers was 100% correct.  The summary of 2-state vs. 4-State classification 

mappings appear in Table 18. 

Table 17.  𝑇𝑇𝑅𝑅𝐴𝐴1 vs. “All Others” Pre-Test Results 𝑛𝑛 = 150,  𝑝𝑝 =  0.713. 

 Interactive  Class    Raw Counts 
True(1) False(0) Benign(1) Infectious(0) 

Diagnostic 
Test 

C* 
(11) 

F 
(01) 

E 
(10) 

D* 
(00) TP FN FP TN 

CTMS 133 - - 17 43 0 90 17 

𝑭𝑭𝑶𝑶= (0.05) 120 13 16 1 43 0 93 14 

𝑶𝑶𝑶𝑶𝑶𝑶= (5) 42 0 91 17 42 1 0 107 

𝒁𝒁𝑶𝑶𝑶𝑶= (2.125) 41 0 92 17 41 2 0 107 

B. 4-State Transactional Classification Extensions  

The results of experimentally tuning the 4-State parameter extensions from Table 16 appear 

in Figure 24.  The 2-state system transaction classes appear on the left side of the figure,  each case 

shows how the ITV trust plot behaves with parameter settings that range from low to high settings 

using experimentally determined values.   Table 18 below, provides the 2-to-4-State mapping.  

System classification state 𝑅𝑅 emphasizes the reward of Cooperative behavior, where a perception 

of authenticity exists.  This system state occurs when the logical and physical RF diagnostic results 

are positive for credential benchmark similarity.  However, since both mechanisms test positive 

for authenticity with a higher posterior estimation of being truly authentic, a user may specify 

policy to increase trust gains when origin integrity evidence is high and the risk of infectious threats 

are low [72]. 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸s indicate the potential for outsider threats and creates the second highest 

threat against the system. As the distrusting penalty step size increases, so does the level of reward. 

Recommended range value increments of 0.25 from 1.5 to 2 for Φ. Moreover, reduce the start 

value of 𝛼𝛼 by ~10%.   
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Figure 24 provide parameter tuning results using 485 transactions to yield 244 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑅𝑅, 

13 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸, 218 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 and 10 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒 Interactions using Paired Logical and Physical 

authentication credentials. 

 

Figure 24.  4-State Extension Results: n=485, 𝑝𝑝=20% and con-man profile = SCA(20)  

For 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹, the emphasis is on insider threats that may occur in medium risk 

ecosystems.  The trust curve of Figure 24.f shifts left to right, indicating doubt or uncertainty of 

trust, which results in delayed responsiveness for initiating a Level-3 response.    This becomes 

apparent when conventional RF fingerprinting of fractional parts of messages (i.e. preamble) 

occurs based on some specified standardized transmission protocol.  Here, an SDR may mimic the 

preamble’s physical transmission characteristics in order to gain access to satellite resources.  Such 

a threat is hard to track, because the authentication credential for the physical evidence is currently 

not considered by the authentication device.  High occurrences of case 𝐹𝐹 behavior may be 

attributable to more common causes such as new operator error or even noise.   

10 20 30 40 50 60

Interactions

-1

-0.8

-0.6

Th-->

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
as

e 
C

: C
oo

pe
ra

tio
n

            

                   

No change

1.1*a

1.25*a

1.5*a

1.75

2

Static = .1

50 60 70 80 90

Interactions

-1

-0.9

-0.8

-0.7

-0.6

Th-->

-0.4

C
as

e 
F:

  I
ns

id
er

 T
ru

st

          

            

None = 1

Upper= 0.97
Lower = 0.9451

.25

.5

.75

.2 (MIN)

50 100 150 200 250

Interactions

-1

-0.8

-0.6

Th-->

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 C
as

e 
E 

: E
xt

er
na

l T
ru

st

         

             

1

1.25

1.5

1.75

2

.75

2.25

10 20 30 40 50 60

Interactions

-1

-0.8

-0.6

Th -->

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
as

e 
D

:  
D

ef
ec

tio
n

       

        

No change

1.25

1.5

1.75

2

2.25

2.5 (Max)



www.manaraa.com

132 

 

In either case, the system state’s recommendation for parameter targeting includes tracking 

specific transmitter behavior and mitigates the loss of uplink availability for non-offenders.  

Gaining of trust should be strictly less than 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑅𝑅 gains.  For 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒, the logical and 

physical classifier tests both report non-matching credentials and the strongest penalty of distrust 

is recommended for high-risk ecosystems to mitigate the occurrence of network-disease.  Response 

policies should target this zone to thwart known prevalent threats.  Here, the ITV plot shifts left to 

right Figure 24.d depending on the penalty step size.  Consider the trade-offs associated with losing 

uplink availability for non-offenders during automatic Level-3 responses by modifying policy to 

deal with specific physical RF origin abnormalities.   A “hands-on” verification step may be 

necessary (e.g. human-in-the-loop).  

Table 18. 2-Factor  4-State Classification Map 
 Authentication Mechanism    

 Factor-1 
Logical 

Factor-2 
Physical 

   

State 𝒄𝒄𝒊𝒊𝑳𝑳𝑶𝑶𝑳𝑳 
[𝑳𝑳 = 𝒍𝒍] 

𝒄𝒄𝒊𝒊𝑷𝑷𝑯𝑯𝑷𝑷 
[𝑷𝑷 = 𝒑𝒑] Focus Risk ITV 

Influence 
𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑅𝑅∗ L=1 P=1 Authentic Low ↓↑ Reward 

𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸 L=1 P=0 Potential 
Outsider  

Moderate Delay ↔, 
↓↑Reward 

𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 L=0 P=1 Potential 
Insider 

Medium Forgive ↔, 
↓↑Reward 

𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒∗ L=0 P=0 Pure  
Attack 

High ↓↑Penalty 

 

C. Trust Forgiveness Extensions for Con-man Attack Mitigation 

The forgiveness factor bounds was experimentally determined using ½ step sizes that 

began with value of 1 to 0.5 to maintain support of the reward and penalty boundaries defined by 

Duncan. Each attack profile’s upper and lower boundaries varied, but a pattern emerges suggesting 

an upper bound for forgiveness as Φ𝑢𝑢𝑝𝑝𝑝𝑝𝑉𝑉𝑃𝑃 ≥ 0.9200.  Values that were lower than this rate for 

𝑆𝑆𝑅𝑅𝑇𝑇(5) violated the bounds placed on 𝛽𝛽 and resulted in an error in processing. See Table 19 for 

specific experimental boundaries of each attack profile.  
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The value of 𝜃𝜃 indicates the attack pattern profile and appears on the left of the table.  The 

2-state fail/pass classification scores appear in column two of Table 19. The original algorithm’s 

penalty for misbehavior is determined by (8) and extends for forgiveness using (11).   When Φ =1, 

the value of forgiveness is used as a control factor represented as 𝑻𝑻𝑪𝑪𝑪𝑪𝑩𝑩𝑶𝑶𝒊𝒊𝑪𝑪𝒍𝒍 and (8) = (11). The 

experimentally determined forgiveness limits for each profile where the goal of enhancing link 

availability applies an upper limit on forgiveness and the goal of attributing user behavior by 

providing RF-DNA evidence of potential con-man activity is attainable using a lower limit of 

forgiveness.  As shown in Table 19, the con-man attack pattern as θ increases, and the occurrence 

of illegal link access attempts decrease. Such a decrease results in a reduced opportunity to detect 

potential con-man activity.  However, since each transaction is considered for trust, the modified 

forgiveness factor does adversely affect the bounds on 𝛼𝛼 and 𝛽𝛽. 

Figure 25 shows the detailed results of con-man attack profile SCA(20) using 400 

interactions. The ITV rating appears along the y-axis while the series interaction number appears 

along the x-axis. The red dashed horizontal line represents the link shut-down threshold for a 

𝐿𝐿𝑒𝑒𝐷𝐷𝑒𝑒𝑝𝑝 − 3 (uplink access shut-down) policy response for all transmitters. The line (dashed yellow) 

depicted in shows the original con-man attack profile detection that fell below the threshold after 

125 session interactions and assumed a final classification of 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑒𝑒. Again, it is the hope of 

the con-man to gain higher levels of trust using this known attack pattern.  The Cyber Defender’s 

decision-support system is capable of logging potential offensive behavior of known users in noisy 

or up-tempo ecosystems using the values from Table 19.  Unauthorized RF transmissions 

conducted by a con-man insider may be detectable with the implementation of physical layer RF-

DNA fingerprint mechanisms.   
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Insider threat tracking provides a delay or avoidance capability to untimely uplink shut-

downs when the origin of an offending transmitter that contains valid pathological credentials in 

one or more fields can be isolated from accessing the network.  Adjusting 𝚽𝚽 to its lower bound 

within four significant digits is ~0.9700 for SCA(20) and the solid (blue) line provides an overall 

transaction classification of 𝑪𝑪𝒍𝒍𝒔𝒔𝒘𝒘𝒘𝒘 − 𝑭𝑭 after 189 session interactions in Figure 25. This system 

condition has two favorable outcomes. First, the link for non-offenders is available for an extended 

period before automatically shutting down link access for non-offenders from 125 to 189 

interactions. This is a 51.2% increase in resource availability. 

Using an upper limit forgiveness value of Φ = 0.9451 will avoid an uplink shut down 

response, while enabling a capability to track a suspected user’s behavior with minimal 

modifications to existing polices. Figure 25 also shows how the overall trust does not converge to 

-1 as the lower limits affords. This result may not be suitable for all network administrators.  

However, notice that a new or complimentary threshold recommendation could possibly halt a 

suspected entity without halting the entire system if device specific tracking is available. Such a 

policy response provides minimal system modifications and extends logging capability of RF-

DNA evidence. As the rate of attack decreases for the 𝑆𝑆𝑅𝑅𝑇𝑇(𝜃𝜃) profile in Table 19, the rate of 

Defection reduces from 16.49% using 𝑆𝑆𝑅𝑅𝑇𝑇(5) to 3.09% using 𝑆𝑆𝑅𝑅𝑇𝑇(30). Therefore, the probability 

of con-man detection by an isolated classifier becomes more difficult with low defection. 
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Figure 25. Enhanced Insider-threat mitigation w/RF-DNA fingerprints augmentation  

 

Table 19. Forgiveness Limits (Φ) of trusted rf-DNA fingerprints 
 Logical/ Network Only Mechanism  Policy-Based Physical Mechanism Extensions 

Attack 
Profile Attempt  𝑻𝑻𝑪𝑪𝑪𝑪𝑩𝑩𝑶𝑶𝒊𝒊𝑪𝑪𝒍𝒍  Availability 

(Avoids Shut-Down)  Tracking 
(Delays Shut-Down) 

SCA ϴ 
𝑭𝑭𝒔𝒔𝒊𝒊𝒍𝒍𝑭𝑭𝑶𝑶
𝑻𝑻𝑪𝑪𝑶𝑶𝒔𝒔𝒍𝒍

 
Con-
Rate 
% 

𝑻𝑻�𝒘𝒘𝑶𝑶 
Φ =1  Φ𝑪𝑪𝒑𝒑𝒑𝒑𝑭𝑭𝒊𝒊 𝑻𝑻�𝒘𝒘𝑶𝑶  Φ𝒍𝒍𝑪𝑪𝒘𝒘𝑭𝑭𝒊𝒊 𝑻𝑻�𝒘𝒘𝑶𝑶 

SCA5 
80

485
 16.49 -0.9487  0.9200 -0.8645  0.9189 -0.0902 

SCA10 44
485

 9.07 -0.8596  0.9400 -0.7430    0.9245    -0.0003 

SCA15 
𝟑𝟑𝟎𝟎

485
 6.19 -0.7203  0.9600 -0.5745  0.9271 0.3136 

SCA20 𝟐𝟐𝟑𝟑
485

 4.74 -0.5248  0.9700 -0.2706  0.9451 0.6054 

SCA25 𝟏𝟏𝟒𝟒
485

 3.71 -0.2813  0.9819 -0.0059  0.9629 0.8348 

SCA30 
𝟏𝟏𝟓𝟓

485
 3.09 0.0007  0.9890 0.2892  0.9776 0.8850 

SCA35 
𝟏𝟏𝟑𝟑

485
 2.68 0.3178  0.9999 0.3472  0.9876 0.9125 
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D. Abuse Case Results  

In Figure 26, the first 150 results of three new diagnostic tests; 𝑒𝑒𝑡𝑡(dark red), 𝑂𝑂𝑑𝑑𝑡𝑡(orange) 

and 𝑍𝑍𝑑𝑑𝑡𝑡 (green) apply physical RF fingerprinting “ON” to augment a single-factor logical (bit-

level) credential authentication scheme.  The scheme aims to mitigate a known con-man attack 

abuse case that begins at transaction 50.  A policy response limit of -0.5 initiates an uplink shut-

down procedure when trust falls below this policy threshold using the ITV mechanism.  AN RF-

Event truth reference (dashed black line) indicates the true status of interactive transmission origins 

in a perfect ecosystem, where the authorized ‘command-1’ transmissions originating from 𝑇𝑇𝑅𝑅𝐴𝐴 are 

truly benign (Cooperative), while all other transmissions are truly infectious (Defection).      

The truth reference indicates that the attack is correctly detected during transactions 51 and 

55 for high (Figure 26a) and low (Figure 26b) initial trust settings.  The baseline CTMS (yellow 

line) scheme, employs single-factor authentication of logical (bit-level) mechanisms without 

augmentation (RF fingerprinting “OFF”) and detects the con-man attack at transactions 61 and 72 

for high and low trust settings before initiating a 𝐿𝐿𝑒𝑒𝐷𝐷𝑒𝑒𝑝𝑝 − 3 response.  Credential authenticator 𝑒𝑒𝑡𝑡, 

underperforms against the baseline and fails to detect the attack at higher trust levels, however 𝑒𝑒𝑡𝑡 

successfully detects the attack at transaction 90 using low trust settings. When RF fingerprinting 

augmentation is “ON”, diagnostics using  𝑂𝑂𝑑𝑑𝑡𝑡 and 𝑍𝑍𝑑𝑑𝑡𝑡 show improved performance over the 

baseline and detects the attack at 51 and 56 before initiating a protective 𝐿𝐿𝑒𝑒𝐷𝐷𝑒𝑒𝑝𝑝 − 3 posture.   That 

is, the number of forged credential acceptance by the CTMS decreases by 16.39% [(51-

61/61)*100] and 16.39% respectively with (𝑂𝑂𝑑𝑑𝑡𝑡 & 𝑍𝑍𝑑𝑑𝑡𝑡) RF fingerprinting augmentation, resulting 

in earlier detection of the attack. 
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a) 

 

b) 

Figure 26.  RF-DNA augmentation [ON/OFF], Trust = [HI (a) / Low (b)].     
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  The findings of Figure 26 suggests that when combined with additional information, RF-

fingerprinting “ON” augmentation more accurately indicates the true nature of uplink access 

request origins and provides up to 16.39% earlier indication of RF credential forgeries.  Figure 27 

provides a comprehensive look at authentication augmentation using RF fingerprints in 

combination with logical credentials in a multi-factor authentication system.  The policy threshold 

is -0.05, α= 0.009 and β= -0.0789 and 𝚽𝚽= 0.75.  The original (dotted black line) con-man attack 

profile SCA(10) employs a simple trust algorithm where a transaction is classified as trusted or 

not.  After developing an enhanced model in [71] the extensions to the simple trust algorithm in 

[72] and [1] (dashed Blue), the con-man attack (assumed to occur in a specified sequence over 

time) is detectable near transaction 145 for a period of 200 transactions.   The use of diagnostic 

RF-DNA augmentation (dashed orange line) against insider threats (𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸)  detects abnormal 

behavior (con-man) at transaction 62. 

An organization may benefit when network configurations target high risk or imminent 

threats, where the loss of command and control of satellite resources may be at stake, despite the 

cost of shutting down uplink access as soon as possible.    In orange, we employ forgiveness for a 

targeted operational ecosystem where an insider threat (𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹) user cannot afford to shut 

down uplink access to all other non-offenders without incurring significant costs. That is to say 

that a single user of a common ground-station transmission circuit should not be capable of 

denying uplink availability to all other users of the same front end transmission circuit.   

As such, the capability to track trusted transmission origins and target a specific denial of 

service towards an offending transmitter is more appropriate.  Using RF-DNA, a more accurate 

indication of the threat (insider vs. outsider) is achieved for authentication.  A randomly generated 

sequence (black) shows how simulated noise affects classification accuracy when using RF-DNA. 
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Figure 27. Abuse Case: Mitigation of insider vs. outsider threats.  

4.5 Conclusions and Future Work 

A need for interoperability of COTS equipment and standardization of wireless network 

protocols contributes to a growing capability to forge or impersonate digital uplink credentials and 

gain access to network resources that use logical-only authentication.  Such forged access may 

originate from locally trusted insider or untrusted outsider RF source origins and cause eND such 

as a denial of service to non-offending ground-station sources.  A multifactor authentication 

framework was introduced which pairs logical (bit-level) and pathological (physical) RF-DNA 

credentials in trust networks using Bayes Theorem.  The proposed method provides an expressive 

4-State classification scheme that improves posterior estimates of new credential claims over the 

conventional 2-State system.   
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Results show that combining additional evidence with the CTMS mechanism improves the 

expressiveness of insider vs. outsider threats and reduces the risk of infectious credential 

acceptance that may lead to eND.  With trusted RF-DNA credential mechanisms “ON” the 

detection of a known cyberattack provides early warning indication of insider vs. outsider threat 

up to 16.39% earlier.  The method provides insider threat behavioral tracking and mitigation 

response capability which increases uplink availability to shared resources (e.g. CubeSat) by 

51.2% for non-offending entities.  Extending forgiveness coupled with policy response refinement 

enables user tracking of suspicious insider threat behavior.  In addition, targeting a specific 

infectious transmitter using 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸 to mitigate outsider therats and 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐹𝐹 for suspected 

insider threats, provide more expressive mission support capability. This research demonstrates a 

policy development approach which leverages the interactive trust value (ITV) mechanism is 

feasible for batch (e.g. log files), single pulse at a time or fixed time sequenced (e.g. meter 

readings) transactions. 
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V. Diagnostic Origin Integrity Screening of Uplink Access Credentials  

Listen to your patient, he is telling you the diagnosis.  (William Osler) 

Conventional authentication of a logical (bit pattern matching) credential is vulnerable to  

impersonation (forgery) of standardized electronic RF network modulation schemes and may 

cause abnormal network behavior if accepted as authentic.  A con-resistant interactive trust 

algorithm assists in the mitigation of credential forgery acceptance in conventional benign 

environments. However, in a threat prevalent environment, conventional authentication 

mechanisms fail to consider the distinct physical RF attributes originating from fixed ground 

station circuits.  As an unintended consequence, acceptance of forged credentials presented in a 

con-man attack allows unauthorized access into a network security boundary, which may lead to 

𝑒𝑒𝑒𝑒𝑒𝑒.  A diagnostic framework applies Bayes Theorem to combine the RF-DNA pathology of 

trusted transmissions with its logical (bit-level) credential pair to improve origin integrity 

verification. A diagnostic screening of authentication log files returns a benign result when paired 

logical and pathological (physical) credential similarity exist, while a classification of infectious 

occurs if either credential fails to meet policy acceptance thresholds.  A representative CubeSat 

network demonstrates the feasibility of the proposed method using a trust management system’s 

response policy for distrusted credential detection.  The method provides 100% posterior correct 

classification among tested samples and reduces false positives by 84%.  A positive (>10) and 

negative (~0.1) likelihood ratio implies generalizable utility RF-Biomarker diagnostics. 
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5.1 Introduction 

Confidence in uplink communication often relies on the assumption that an authorized 

electronic device transmits a fixed identification code matching the intended receiver’s stored 

internal credentials such as authorized username, FCC-ID [68] and password combinations as 

specified in the link control protocol (LCP) RFC 1661 when authentication is used to conduct a 

three-way handshake technique like IEEE 802.11 wireless networking protocol [76]. In some 

cases, the use of frequency-division or time-division modulation schemes can transmit information 

remotely for a single device using separate channels of a coherent baseband signal [12]. In the 

cases where identity authentication is required, additional information such as telemetry, 

geospatial or other correlation of information transmissions in 𝑤𝑤𝑠𝑠 using techniques such as signal 

watermarking or steganography provides opportunity to detect fraud using visible or invisible 

mechanisms.  Such aggregation of information may increase the confidence of origin integrity 

[13].   

A distributed CTMS manages the trustworthiness of uplink access requests originating 

from fixed ground stations [21] [1]. Currently, the CTMS encodes and decodes RF modulations 

of logical (digital bits) credential (AuthCount) fields to support authentication of fixed and 

standardized layer-2 or layer-3 message identification field 𝐼𝐼𝑒𝑒𝑇𝑇. A satellite receiver employs an 

interactive trust value (ITV) mechanism to assess the dynamic reputation trust rating of received 

uplink requests based upon a series of transactional command interactions. The authenticity of 

such requests depends on the accuracy of digital logic-based authentication mechanism only.  A 

multi-factor authentication air-monitoring framework was introduced using Zig-Bee network 

devices in [24].  Previous work using RF-DNA fingerprints [16] [18] [51] [52] suggest that the 

method to obtain preamble fingerprints can be extended to include an entire fixed message.  
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Such an extension adds an additional authentication factor to provide physical evidence during 

authentication validation when logical credential authentication alone is uncertain.  

Dimensionality reduction improves feature selection using sensitivity analysis [50]  [70] and is 

adapted for RF signature analysis. 

5.2 Background & Related Works 

A Biomarker is defined as [40] [41] “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic 

response to therapeutic intervention.”    Biomarkers assist in the evaluation of distinct physical or 

natural attributes that are inherent in patients or among social hereditary classification, such as 

deoxyribonucleic acid (DNA).   Similarly, for electronic devices and networks, an RF-Biomarker 

is a physical or intrinsic characteristic of an electronic communication device’s RF emissions that 

indicates abnormal process or response when the origin integrity of RF transmissions are suspect 

for causing electronic network-disease.    It is objectively measured and evaluated to differentiate 

benign (normal) versus infectious (abnormal) electrical RF transmission receipts.  RF-biomarker 

analysis aims to lend further insight into the etiology of a specified network abnormality referred 

to as network-disease (e.g. loss of link access availability) when observed levels are inconsistent. 

RF-biomarkers indicate the true origin of a claimed RF-Event given some decision-support 

tolerance threshold indicated as 𝑑𝑑𝑇𝑇. Diagnostic results are a representation of how likely the 

classified condition is, given a known population and threat prevalence rate [42].  Ahmad (2016) 

employs an RF-based “biodetection” platform to detect various viruses without using conventional 

biomarkers.  This research suggests an increase in integrating biometrics, biomarkers such as DNA 

and RF distinct native attributes (RF-DNA) fingerprinting [43].   
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In Biometrics, an estimated 150 standardized indicators called minutia details are used in 

human fingerprinting techniques [9].  Unfortunately, there is no established number of 

standardized electronic fingerprint indicators or terminology (i.e. radio frequency fingerprints). 

Inspired by electronic defense mechanisms against spam and [32] junk email [45] along with 

authorized wireless uplink access using authentication mechanisms, RF fingerprinting 

mechanisms are explored to further augment network security.  Passive radio frequency (RF) 

transmitter fingerprinting techniques were used in the mid-90’s [18].  Shortly thereafter, 

unintentional RF emissions were collected from electronic devices, including network interface 

cards, to discriminate between anomalous behavior [4] [46]. DeJean employs physical 

characteristic-based certificates of authenticity (COA) to augment radio frequency identification 

(RFID) verification systems [49].   

Currently, RF “distinct native attribute” (RF-DNA) fingerprinting classifies physically 

distinct RF transmissions based on standardized invariant preamble fields of a message.  Invariant 

fields provide inherent physical characteristic permanence of a composite RF-DNA fingerprint’s 

feature-set.  Such a set includes normal distribution of specified RF-measurements of an invariant 

field for each feature.  In RF-DNA fingerprinting, measurements of the main RF characteristics 

include the instantaneous amplitude, frequency and phase.  The start and stop time of invariant 

region of interest (ROI) fields indicate the time-series target of RF signature collection.  The central 

moments (skewness, kurtosis, standard deviation and variance) of each main characteristic may 

also be considered in the composite fingerprint [24] [50] [51] [52].  Reising and Kuciapinski 

discovered methods to analyze classification parameters, which reduce the composite feature-set’s 

dimensionality [52] [53]. 
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There are various modalities to automate fingerprint authentication and verification of 

electronic fingerprint minutia details (features).  However, the minutia detail classification across 

composite fingerprint features may suffer from poor detail (feature) selection when new samples 

are compared to database templates [54].  Additional methods have been used to automate the 

discovery of indicators termed “biometrics” in the medical community. These biometrics use 

minutia details to identify people in information systems [55], while regional or localization 

techniques are employed in electronic networks to capture physical RF features (minutia details) 

to identify a specific transmission device.  During network security monitoring, the visualization 

of intrusion detection and prevention system [36] enhances the situation awareness (SA) [56] of 

Cyber Operators.  Responsive network treatment based on the unique physical properties that may 

exist among physical RF-DNA evidence of infection is currently unavailable. 

• 5.2.1 Properties of Unique RF Features 
The first principled (Property-0) step of combining the pathology of physical and logical 

RF evidence is defining policy of acceptance of naturally occurring RF emissions (e.g. e-CFR) 

measurements.  In this article, the RF measurements include amplitude, frequency and phase 

response from 2-GFSK over single side-band FM carrier transmissions at 449.9MHz.  A summary 

of general acceptance policies of Table 13, considers five properties extended from [3] [4].  

𝑃𝑃𝑟𝑟𝑀𝑀𝑝𝑝𝑒𝑒𝑟𝑟𝑡𝑡𝑦𝑦 − 1 suggests that a specified physical analog transmission circuit is an inherent carrier 

of distinct RF fingerprints that are contained within specified RF-Events and must be naturally 

(intrinsic) generated distinct RF origins [3]. The sources of fixed and authorized transmitters 

influence an RF fingerprint and must remain distinct from all other (e.g. mobile) sources during 

natural RF generation to satisfy Property-1.  
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To satisfy Property-2, the physical attributes of original RF-Events must be inherent among 

all similar interoperable device emissions (e.g. emissions made in the ultra-high frequency range) 

[29] [75]. Thirdly, Property-3 calls for repeatability of fingerprinted RF-Events such that 

distributions of RF-Event samples are sufficient for RF fingerprint benchmark representation. 

Property-4 implies a common RF-Event witness (e.g. authentication receiver) provides consistent 

measurements of new and recall of benchmark levels during similarity comparisons. Witness 

(authenticator) 𝑑𝑑 has self-evident authentication of RF credential claims originating from 𝑟𝑟 when 

all properties of Table 13 are satisfied.  

Table 20. Desirable Properties of Unique RF Features  
Desired Description 

  
Property-0: An Oracle or policy of RF evidence acceptance has been pre-defined as truth. Defining a specific 

authentication device’s measurement of RF fingerprint can be used as a truth reference. 

Property-1: An original RF-Event must be natural (i.e. analog or continuous) in its immediate existence in 
time and space rather than existing as a derived logical (e.g. binary or digital) interpretation. 

Property-2:  Specified feature attributes of the physical event must be inherent among similar RF  emission 
(e.g. Type III frequencygenerating transmitters [77]. 

Property-3: The extractable features of RF generating circuits must be repeatable and evident from the 
occurrence of the natural event stimuli. 

Property-4: A sample obtained from the RF-Event must provide evidence that its significant features are 
statistically unique to support known and consistent event measurements. 

 

• 5.2.2 Characteristics of Useful Network Diagnostic Tests 
Following the practice of the medical community   [39], useful criteria enables network 

diagnostic test selection to mitigate network-disease occurrence. Key players (e.g. Cyber 

Operators, network administrators, resource owners and policy makers) may consider the adoption 

of network diagnostic testing in two specific areas.   First, a screening of d’s RF log files aims to 

identify the presence of infectious RF-Events given a known threat prevalence and network 

vulnerability. If screening reveals abnormal infectious levels, further tests may be necessary to 

treat or prevent the occurrence of a specified network-disease.   
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Treatment may include a comprehensive distributed system of RF-biomarker sensor 

networks with updatable signatures.  For example, Table 3 lists situations where diagnostic testing 

may be beneficial when the risk of network-disease perception is serious in nature.  In addition, 

the risk of an infectious RF source should be prevalent among similar networks to support 

increased threat prevalent rate.  A finding of infectious evidence (significant dissimilarity) should 

be treatable in a wireless RF networking ecosystem. Tests should be minimally invasive to RF 

circuits and should not harm the communication functionality of 𝑑𝑑. Finally, a diagnostic test should 

be accurate in its classification of benign and infectious RF-Events.  Figure 28 presents the six 

general steps of the multi-factor authentication framework using logical and pathological 

credential benchmarks. 

The framework considers RF-biomarker augmentation while considering Table 3. 0.) 

Define the normal (non-diseased) and abnormal network conditions. 1) Specify communication 

node pairing policy [7]. 2) Collect RF signatures of authorized transmissions.  3) Specify 

acceptable thresholds for diagnostic usefulness. 4) Specify network treatment response.  5) Assess 

the diagnostic accuracy and make recommendations for improvement. 

Table 21. Criterion of Useful RF Diagnostic tests [40] 
 Network-disease should be serious or potentially so 

 (e.g. Inability to provide uplink access) 

1 Network-disease should be relatively prevalent in the target 
population (Cyber Threat Rate is Increasing) 

2 Network-disease should be treatable (Recommendations to 
Minimize risk of loss to Receiver or 𝑇𝑇𝑅𝑅 in some cases) 

3 Treatment should be available for actual or suspected infectious 
carriers who test positive (disease is present in log files) 

4 
The diagnostic test should not harm the authentication receiver nor 
cause uncessary modifications of the incoming RF-Event’s 
physical RF characteristics. 

5 The diagnostic test should accurately classify benign and infectious 
RF-Events according to some policy-based threshold(s). 
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Figure 28.  Multi-Factor Authentication Framework 

 

• 5.2.3 Multi-factor Authentication Framework Overview 
5.2.3.1 Network-disease Specification 
A network abnormality may be attributed to some known or unknown cause.  When the 

cause of a specified abnormality is suspicious of originating from unauthorized or malicious 

activity, its occurrence can be classified as a symptom of realization of network-disease. There 

may be several abnormalities which contribute to observable network-disease outcomes.    

Acceptable thresholds, which specify a network abnormality class, depends on the policy of key 

players. 

5.2.3.2 Policy Specification 
The ultimate goal of policy development is to provide early warning signs, which can be 

useful in mitigating or preventing the occurrence of network-disease.  After network-disease 

specification and vulnerability assessment, a user’s policy may dictate the flow of information 

between electronic transmission devices for increased security control.  Policy should therefore, 

specify desired communication paths which originate from trusted electronic devices in authorized 

transmission states.   In addition, naming convention, targeted RF fingerprint ROIs, and RF-

measurement criteria should be carefully considered.   
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The policy should also indicate the type of electronic receiver that will be employed for 

demodulation and ultimate authentication of received RF transmission events. 

5.2.3.3 RF Signature Benchmarking  
RF benchmarking provides trusted RF signatures for diagnostic comparison of new RF-

Event claiming to originate from a known fixed transmission source. An authenticating device 

may possess local or reach-back RF diagnostic capability.  When a local device is trained for self-

evident authentication, a trusted RF-signature template resides within the local memory of the 

authentication device for benchmark comparisons.   

5.2.3.4 RF-Biomarker Candidate Feature Selection 
Following the collection of RF signature benchmarks, the screening of the most useful RF-

measurements is done using statistical and objective analysis.  The purpose of RF-screening is the 

discovery of the set of RF-Biomarkers from the candidate feature-set, which provides the most 

useful electronic device verification accuracy. The top performing RF-biomarkers are selected to 

improve posterior classification estimates. 

5.2.3.5 Gold Standard Device Specific Benchmark Validation 
A diagnostic test is a formal classification method that partitions a condition into two 

generalized states  [39].  A common diagnostic test, in practice, requires a standard reference for 

comparisons.  A benchmark comparison test quantifies a truth reference’s measures of 

performance and is commonly referred to, in the medical community, as a gold standard (GS) [39] 

[42] [58]. A device-specific gold standard (GS) is a source of information, which tells us the true 

status of received RF transmission event (RF-Event) condition as either benign or infectious.  The 

sequence and selection of benign vs. infectious RF-Events occurs using a simple random process 

that considers the threat prevalence rate to avoid verification bias and minimizes unavoidable 

experimental errors.  
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The GS validation process concludes with a report of the intrinsic, priori, posterior and 

likelihood ratios for each diagnostic test.  The intrinsic accuracy provides the inherent accuracy 

(𝑇𝑇𝑅𝑅𝑅𝑅) of a diagnostic test.  The posterior classification accuracy provides insight into cost and 

benefit trade-offs associated with appropriate treatment selection following a diagnostic test. A 

more generalizable diagnostic measure of usefulness is the likelihood ratio (LR) when sufficient 

representative sampling occurs. 

5.2.3.6 Treatment Response Trade-Offs 
The purpose of this step provides diagnostic insight that involves a consideration of cost 

and benefit to the network itself, Cyber defender’s and key stake holder interests. In some uncertain 

network situations, automatic responses may pose high-risk situations.  Treatment, in this context, 

refers to troubleshooting responses taken to mitigate or eliminate early warning signs of network-

disease.  There are trade-offs associated with each post-test treatment response of a network’s 

diagnostic result.  A benefit occurs when the discovery of infection occurs [𝑇𝑇 = 1,𝑒𝑒 = 1] and a 

treatment response is made towards mitigating unauthorized access attempts and a non-occurrence 

of electronic network-disease.  However, a cost occurs when electronic network-disease occurs 

despite the use of treatment (e.g. blocking).  If the cost of each diagnostic test is identical, then 

more testing may be necessary to make appropriate treatments.  In binary marker evaluations, we 

consider the simple setting where RF-Events either have high or low symptomatic risk values. 

That is, high 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘(0) ≡ 𝑃𝑃[𝑒𝑒 = 0| 𝑌𝑌 = 0] = 𝑒𝑒𝑃𝑃𝑁𝑁, or the low value where low 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘(1) ≡

𝑃𝑃[𝑒𝑒 = 1| 𝑌𝑌 = 1] = 𝑃𝑃𝑃𝑃𝑁𝑁.  The distribution of risk in the population indicated by the RF-biomarker 

should be reported (absolute risk and the frequencies of those risks in the population) [59].  Let 𝑝𝑝 

= prevalence which indicates how widespread the potential of network-disease (threat) is 

throughout the entire population. 
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5.2.3.7 Refine/Update 
After final RF-Biomarker selection, threshold selections, a simulation assesses the 

posterior accuracy of a diagnostic test using a GS validation file. Updates to the framework 

proposal can occur at any step without regard to order. 

• 5.2.4 Decision Rules 
A decision rule [31] or corresponding likelihood ratio determines the maximum error 

criterion or maximum a posteriori (MAP). Decision-makers aim to make the correct network 

treatment decision with as few diagnostic tests as necessary.  An arbitrary policy may specify a 

minimum accuracy of 90% pretest classification accuracy before recommending treatment.  

During the decision to treat a network for symptoms of network-disease, an initial screening level 

criterion ′𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿′ specifies the minimum number of infected RF-Event samples that must occur 

in an arbitrary screening diagnostic test.  This value was experimentally determined by setting 

𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑝𝑝. The screening tolerance can be specified using 

𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇𝑇𝑇𝐿𝐿  = (𝑛𝑛 ∗ 𝑝𝑝) ∗ 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿).                                                                  (1) 

A policy-based tolerance region over a distribution of RF-measurements specifies an 

acceptable similarity level of at least a proportion 𝑝𝑝 of the population 𝑅𝑅 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑒𝑒𝑟𝑟 (RF-Events) 

with confidence (1 –  𝛼𝛼) is contained within its upper  (𝑈𝑈(𝑋𝑋)) and lower 𝐿𝐿(𝑋𝑋) limits of acceptance 

[60]. A regional tolerance region specification supports binary classifications of composite RF 

fingerprint authenticity using a decision-rule or threshold for acceptance vs. rejection.  A 

(𝑝𝑝, 1 − α)  two-sided binary tolerance interval (𝐿𝐿(𝑋𝑋),𝑈𝑈(𝑋𝑋)) satisfies the condition 

𝑃𝑃𝑇𝑇{𝑃𝑃𝑇𝑇(𝐿𝐿(𝑋𝑋) ≤ 𝑋𝑋 ≤ 𝑈𝑈(𝑋𝑋)|𝑋𝑋) ≥ 𝜌𝜌}.                                                                   (2) 
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Where ′α′ represents the significance level. Construction of localized RF-Biomarker 

tolerance regions aim to improve posterior classification of a composite binary tolerance interval.    

The tolerance factor is computed based on a user’s specification for reliability of new comparisons 

made to a specified benchmark value.  The specifications include the content of   new ′𝑋𝑋 = 𝑏𝑏′  RF-

Events (independent random variable) that are to be tested, the overall level of confidence that the 

RF-Biomarker levels should fall within the proportion of 𝑋𝑋 samples that are acceptable to a known 

benchmark [60].  Each tolerance region is adjusted using the Gauss-Kronrod factor 𝑘𝑘2 [30]. A 

tolerance region is then computed for each local RF-Biomarker candidate using [(𝜌𝜌 = 𝑛𝑛), (Ψ =

{90,95})]. 

𝑒𝑒𝑅𝑅𝑎𝑎𝑏𝑏𝑛𝑛𝑀𝑀𝑟𝑟𝑅𝑅𝑟𝑟 = �1 = 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛,               𝑋𝑋 𝑅𝑅𝑟𝑟   𝑤𝑤𝑅𝑅𝑡𝑡ℎ𝑅𝑅𝑛𝑛 𝑇𝑇𝑀𝑀𝑝𝑝𝑒𝑒𝑟𝑟𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒 ; 
0 = 𝑅𝑅𝑛𝑛𝑓𝑓𝑒𝑒𝑐𝑐𝑡𝑡𝑅𝑅𝑀𝑀𝑝𝑝𝑟𝑟,           𝑋𝑋 𝑅𝑅𝑟𝑟 𝑂𝑂𝑝𝑝𝑡𝑡 𝑀𝑀𝑓𝑓 𝑇𝑇𝑀𝑀𝑝𝑝𝑒𝑒𝑟𝑟𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒 .                                              (3) 

In Figure 29(a) after conducting a diagnostic test and getting results.  In (b) a diagnostic 

test that falls between 𝑻𝑻𝑻𝑻𝟏𝟏and 𝑻𝑻𝑻𝑻𝟐𝟐 indicates inconclusive results and suggests a need for 

additional diagnostic testing.  In both cases, network treatment is recommended for results greater 

than  𝑻𝑻𝑻𝑻𝟏𝟏.   In situation (b) may occur when pre-test diagnostic accuracy results contain high errors 

resulting in less accurate posterior predictive estimates.  Threshold 𝑇𝑇ℎ𝑖𝑖 accepts RF-Event samples 

where the combined Euclidean distance of new RF-measurements falls within tolerance limits (3). 

In uncertainty, two or more parallel classifiers, as shown in Figure 10b may improve posterior 

estimates when Bayesian aggregation is employed in uncertainty and more conclusive evidence is 

necessary.  The second decision-rule aims to refine the results obtained in (3) using an ordinal 

valued threshold.  Let 𝑏𝑏 represent the total number of independent RF-measurements that are being 

considered in an RF fingerprint diagnostic test. An ordinal decision-rule or threshold setting 

accounts for the majority vote ′O𝐿𝐿𝑉𝑉𝑡𝑡𝑉𝑉′ status of all 𝑏𝑏 measurements.  
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Then a ′O𝐿𝐿𝑉𝑉𝑡𝑡𝑉𝑉
′  decision-rule can be developed using an ordinal valued threshold ′O𝑑𝑑𝑡𝑡′ of local 

feature diagnostics that meet local policy threshold requirements for acceptable tolerance. 

𝑂𝑂𝑑𝑑𝑡𝑡 = ��
𝑏𝑏
2
� + 1� .                                                                          (4) 

The ordinal valued data decision rule reduces to a binary result by comparing the RF-

Event’s election results of the  O𝐿𝐿𝑉𝑉𝑡𝑡𝑉𝑉 to the threshold specified in (6) above as;  

𝑂𝑂𝐿𝐿𝑉𝑉𝑡𝑡𝑉𝑉 ≥ 𝑂𝑂𝑑𝑑𝑡𝑡 , �1,        𝑆𝑆𝑅𝑅𝑚𝑚𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑅𝑅𝑡𝑡𝑦𝑦 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑟𝑟𝑅𝑅𝑡𝑡𝑦𝑦 𝑒𝑒𝑅𝑅𝑅𝑅𝑟𝑟𝑡𝑡𝑟𝑟 (𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛);
0,                                   𝑀𝑀𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑅𝑅𝑟𝑟𝑒𝑒 (𝑅𝑅𝑛𝑛𝑓𝑓𝑒𝑒𝑐𝑐𝑡𝑡𝑅𝑅𝑀𝑀𝑝𝑝𝑟𝑟).                                              (5) 

A third decision-rule employs a continuous valued threshold ′𝑍𝑍𝑑𝑑𝑡𝑡′ that indicates an RF-

Event’s average risk ′�̅�𝑍𝑃𝑃𝑖𝑖𝑠𝑠𝑘𝑘′ of acceptance using risk zones.  A risk zone divides a binary policy 

tolerance region from (3) into four weighted risk zones (lower is better). Each risk zone’s upper 

and lower tolerance bounds are;  

�𝐿𝐿𝑧𝑧(𝑋𝑋),𝑈𝑈𝑧𝑧(𝑋𝑋)� = 𝐿𝐿3(𝑋𝑋) < 𝐿𝐿2(𝑋𝑋) < 𝐿𝐿1(𝑋𝑋),  𝑈𝑈1(𝑋𝑋)  < 𝑈𝑈2(𝑋𝑋) < 𝑈𝑈3(𝑋𝑋).                   (6) 

When a pulse fails to meet the original benchmark’s binary tolerance interval, a critical 

risk score of ‘4’ occurs to indicate credential tolerance failure. A comparison of the average risk 

score (�̅�𝑍𝑃𝑃𝑖𝑖𝑠𝑠𝑘𝑘) to the threshold 𝑍𝑍𝑑𝑑𝑡𝑡 indicates the level of risk as 

  �̅�𝑍𝑃𝑃𝑖𝑖𝑠𝑠𝑘𝑘 ≤ 𝑍𝑍𝑑𝑑𝑡𝑡 , �
1,                   𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡𝑎𝑎𝑏𝑏𝑝𝑝𝑒𝑒 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘 (𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛);
0,       𝑝𝑝𝑛𝑛𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡𝑎𝑎𝑏𝑏𝑝𝑝𝑒𝑒 𝑟𝑟𝑅𝑅𝑟𝑟𝑘𝑘 (𝑅𝑅𝑛𝑛𝑓𝑓𝑒𝑒𝑐𝑐𝑡𝑡𝑅𝑅𝑀𝑀𝑝𝑝𝑟𝑟).                                 (7) 

In both cases, network treatment is recommended for results greater than or equal to 

decision-rule 𝑇𝑇ℎ1. Using Bayes Theorem, the aggregation of acceptable diagnostic improves 

posterior probability classifications [39]. 
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Figure 29. Treatment decision rule using a single (a) and multiple (b) thresholds.   

 

• 5.2.5 Measuring Diagnostic Accuracy 
5.2.5.1  Classification Model 
A classification model maps each instance of an RF-Event ′𝑊𝑊′ to a predicted class.  

Consider a simple security policy that specifies a set of received authorized transmission states by 

a trusted network communications device as an element of 𝑊𝑊, which maps to the set of instances 

{𝑟𝑟, 𝑅𝑅} [61]. For example, the RF-Event 𝑤𝑤𝑠𝑠 represents a verified transmission state that is secure. 

Such a state inherently includes the transmission source of origin while all other non-authorized 

transmission states 𝑤𝑤𝑖𝑖 are specified as insecure regardless of the source of origin [62]. More 

formally, let the independent variable 𝑒𝑒 denote the true transmission origin condition of an RF-

Event as 

𝑒𝑒 = �1                   𝑓𝑓𝑀𝑀𝑟𝑟 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛;
0      𝑓𝑓𝑀𝑀𝑟𝑟 𝑛𝑛𝑀𝑀𝑛𝑛 − 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛.                                                                   (8) 

Let 𝑇𝑇 denote a diagnostic test’s result classifying an instance of 𝑊𝑊 as benign ′𝑤𝑤𝑠𝑠′ or 

infectious ′𝑤𝑤𝑖𝑖′.  Further, suppose authenticating device 𝑅𝑅𝑅𝑅𝐶𝐶′𝑟𝑟 previous observances of benign RF-

Event transmissions were used for RF benchmark training.  
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Once trained, 𝑅𝑅𝑅𝑅𝐶𝐶 consider a continuous decision threshold policy that ranges from zero 

(completely infectious) to one (completely benign). For pure binary decisions, the diagnostic test 

(𝑇𝑇) is represented as  

𝑇𝑇 = �1             𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟 (+)𝑓𝑓𝑀𝑀𝑟𝑟 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛;
0      𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟(−)𝑓𝑓𝑀𝑀𝑟𝑟 𝑛𝑛𝑀𝑀𝑡𝑡 𝑏𝑏𝑒𝑒𝑛𝑛𝑅𝑅𝑏𝑏𝑛𝑛.                                                         (9) 

Given the diagnostic result of 𝑇𝑇 and the true RF-Event’s origination status 𝑒𝑒, four basic 

classification categories can be derived from raw test count classifications of true positive (TP), 

true negative (TN), false positive (FN) and false negative (FP) using a known benchmark truth or 

GS file truth reference as described previously.  The diagnostic sensitivity (𝑆𝑆𝑒𝑒) provides the 

probability of a benign diagnostic result 𝑃𝑃(𝑇𝑇 = 1) is determined by the TP count divided by the 

total number of true benign RF-Event samples from the GS file. The specificity (𝑆𝑆𝑝𝑝) of diagnostic 

testing is the converse of 𝑆𝑆𝑒𝑒 and measures the diagnostic test’s capability to exclude infectious 

credential conditions expressed by 𝑃𝑃(𝑇𝑇 = 0). 

5.2.5.2 Pre-Test Classification Probabilities (Priori) 
  Probability classifications employ various names of the basic count categories.  We adopt 

the medical terminology in this article for the terms, true positive fraction, true negative fraction, 

false positive fraction and false negative fraction.  Khanna describes the pre-test classification 

probabilities in terms of rates using true positive rate (TPR), false positive rate (FPR), true negative 

rate (TNR) and false negative rate (FNR).  For example, (TPR) is used to describe the classification 

system’s reliability [58], Fawcett uses the terms hit rate and recall [61], whereas the medical 

community employs the term sensitivity fractions. Pepe argues that the value is not a rate at all, 

but a probability [39].   
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Here we refer to the TPR as the sensitivity (𝑆𝑆𝑒𝑒) to detect a TP classification condition from 

a population trusted (secure) instances of 𝑊𝑊 which exists when 𝑆𝑆𝑒𝑒 = 𝑇𝑇𝑃𝑃𝑅𝑅 = 𝑃𝑃[𝑇𝑇 = 1 |𝑒𝑒 = 1].  A 

pre-test probability is based on the RF-Event’s historical profile, modulation schemes, binary 

encodings, signs, symptoms, and results of any other diagnostic tests performed earlier such as 

logical credential verification [39] using classification probability parameters (TPR, FPR, 𝜌𝜌).  

Where 𝜌𝜌 indicates the prevalence of infectious samples among the tested population and does not 

affect the intrinsic accuracy (𝑇𝑇𝑅𝑅𝑅𝑅) of a diagnostic classifier [42].   

𝑇𝑇𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑒𝑒

𝑆𝑆𝑎𝑎𝑚𝑚𝑝𝑝𝑝𝑝𝑒𝑒𝑆𝑆𝑅𝑅𝑧𝑧𝑒𝑒
.                                                                                (10) 

5.2.5.3 Post-Test Classification Probabilities (Posterior) 
Post-Test classification probabilities are not used to quantify the inherent accuracy of a 

receiver’s diagnostic test.  The posterior predictive values of a receiver-based diagnostic test are  

[39] 𝑃𝑃𝑃𝑃𝑁𝑁 = 𝑃𝑃[𝑒𝑒 = 1 |𝑇𝑇 = 1] and the false discovery rate (FDR) error is 𝐹𝐹𝑒𝑒𝑅𝑅 = (1 − 𝑃𝑃𝑃𝑃𝑁𝑁) =

𝑃𝑃[𝑒𝑒 = 0 |𝑇𝑇 = 1].  The probability that an RF-Event is truly infectious given a negative diagnostic 

result is called the negative predictive value (𝑒𝑒𝑃𝑃𝑁𝑁 = 𝑃𝑃[𝑒𝑒 = 0|𝑇𝑇 = 0).  The probability that an 

RF-Event is truly benign given an infectious diagnostic result is called the false omission rate 

(𝐹𝐹𝑂𝑂𝑅𝑅 = (1 − 𝑒𝑒𝑃𝑃𝑁𝑁) = 𝑃𝑃[𝑒𝑒 = 1|𝑇𝑇 = 0).  Where a perfect test predictor occurs when (𝑃𝑃𝑃𝑃𝑁𝑁 =

𝑒𝑒𝑃𝑃𝑁𝑁 =  1).  When there is no useful information about the true nature of an RF-Event’s origin 

integrity, the classifier is deemed useless.  This useless situation occurs when the 𝑃𝑃𝑃𝑃𝑁𝑁 =  𝜌𝜌 and 

𝑒𝑒𝑃𝑃𝑁𝑁 =  (1 –  𝜌𝜌).  The roles of 𝑒𝑒 and 𝑇𝑇 are reversed in the post-test predictive values relative to 

their roles in the pre-test classification probabilities [39, p. 16].  Posterior predictive values are most 

useful for a particular study and depends on the level 𝜌𝜌 which may not be generalizable beyond the 

tested samples unless suitable random samples of the general population are considered [78] [79]. 



www.manaraa.com

157 

 

5.2.5.3.1 Relationship Between Predictive Values and Classification Probabilities 

Predictive values are best used to quantify the usefulness of a diagnostic test while pre-test 

classification probabilities are best used to indicate the intrinsic accuracy (𝑇𝑇𝑅𝑅𝑅𝑅) of a specific 

diagnostic test.  Prediction values are dependent on three parameters that should be reported in 

diagnostic test performance [39].  When knowledge of ρ from (8) or (9) is available, there is a 

direct relationship between posterior predictive values and priori classification probabilities. 

These three parameters can be found using the priori classification probabilities and the disease 

prevalence as (TPR, FPR, 𝜌𝜌).  The three predictive value parameters that provide post-test statistics 

are (PPV, NPV, 𝜏𝜏) [39, p. 16].  The symbol 𝜏𝜏 indicates the probability of a positive test 𝑃𝑃[𝑇𝑇 = 1].  

5.2.5.3.2 Bayesian Aggregation of Multiple Diagnostic Tests  

In the first medical example [39], the diagnostic test’s usefulness assessment employs 

Bayes Theorem to represent the post-test probabilities (PPV, NPV,𝜏𝜏) in terms of the pre-test 

probabilities (TPR, FPR, 𝜌𝜌) where �𝑃𝑃𝑃𝑃𝑁𝑁 = 𝜌𝜌𝑇𝑇𝑃𝑃𝜌𝜌
{𝜌𝜌𝑇𝑇𝑃𝑃𝜌𝜌+(1−𝜌𝜌)𝐹𝐹𝑃𝑃𝜌𝜌}�, �𝑒𝑒𝑃𝑃𝑁𝑁 = (1−𝜌𝜌)(1−𝐹𝐹𝑃𝑃𝜌𝜌)

{(1−𝜌𝜌)(1−𝐹𝐹𝑃𝑃𝜌𝜌)+𝜌𝜌(1−𝑇𝑇𝑃𝑃𝜌𝜌)}� 

and 𝜏𝜏 = (𝜌𝜌𝑇𝑇𝑃𝑃𝑅𝑅 + (1 − 𝜌𝜌)𝐹𝐹𝑃𝑃𝑅𝑅).  Moreover, the pre-test or priori probabilities are written in terms 

of posterior probabilities and similarly found as 

 �𝑇𝑇𝑃𝑃𝑅𝑅 = 𝜏𝜏𝑃𝑃𝑃𝑃𝐿𝐿
{𝜏𝜏𝑃𝑃𝑃𝑃𝐿𝐿+(1−𝜏𝜏)(1−𝑇𝑇𝑃𝑃𝐿𝐿)}�, �𝐹𝐹𝑃𝑃𝑅𝑅 = 𝜏𝜏(1−𝑃𝑃𝑃𝑃𝐿𝐿)

{𝜏𝜏(1−𝑃𝑃𝑃𝑃𝐿𝐿)+(1−𝜏𝜏)𝑇𝑇𝑃𝑃𝐿𝐿}�  

and 

 �𝜌𝜌 = 𝜏𝜏𝑃𝑃𝑃𝑃𝑁𝑁 + (1 − 𝜏𝜏)(1 − 𝑒𝑒𝑃𝑃𝑁𝑁)�. 

As a second medical community example of assessing the usefulness of diagnostic 

accuracy, Zhou’s application of Bayes’ Theorem computes the posterior probabilities in [42, pp. 

48-49].  Rosen generally employs Bayes Theorem to mitigate the occurrence of electronic spam 

message acceptance using word occurrence filters.   
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More generally, if 𝐵𝐵𝑖𝑖 is the event where a new RF-Event sample contains a set of matching 

physical RF-Biomarker credential occurrences 𝑏𝑏𝑘𝑘, then by Bayes’ Theorem the prediction 

probability that a message containing all specified RF-Biomarker 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑘𝑘 as benign 

similarity levels is found by 

𝑟𝑟(𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑘𝑘) =
∏ 𝑝𝑝(𝑏𝑏𝑘𝑘)𝑘𝑘
𝑖𝑖=1

∏ 𝑝𝑝(𝑏𝑏𝑘𝑘)𝑘𝑘
𝑖𝑖=1 + ∏ 𝑞𝑞(𝑏𝑏𝑘𝑘)𝑘𝑘

𝑖𝑖=1
.                                          (11) 

For a particular RF-Biomarker (𝑏𝑏𝑘𝑘) credential, the pre-test probability that an acceptable 

tolerance level of similarity for 𝑏𝑏𝑘𝑘appears in an infectious message is estimated by determining 

the proportion of 𝑏𝑏𝑘𝑘 appearances in known benign vs. all infectious RF-Events. 

• 5.2.6 Misclassification Probabilities (Errors) 
One method of quantifying diagnostic test accuracy is by considering the frequency of 

misclassification for each infectious RF-Event states.  There are two types of errors that may occur 

during pre-test classification.  A Type-I error is referred to as the false positive rate (FPR) and is 

often indicated by the symbol alpha (𝛼𝛼).   When used in computer science applications, it is 

inappropriate to simply report the misclassification probability, the FNR = (1-TPR) and the FPR 

[39].  A Type-II error rate or fraction estimates the probability that a receiver classifies an RF-

Event as infectious when the true condition is benign as the false positive rate (𝐹𝐹𝑃𝑃𝑅𝑅 =

𝑃𝑃[𝑇𝑇 = 1 |𝑒𝑒 = 0]).  The paired diagnostic results of (FPR, TPR) probabilities define the likelihood 

at which (4) occurs during a particular diagnostic test [39].   

• 5.2.7 Measuring Predictive Usefulness  
The likelihood ratio (LR) statistic for a given diagnostic test provides the ratio of expected 

test results in subjects with a certain condition to the subjects without the condition. In this context, 

a �𝐿𝐿𝑅𝑅𝑡𝑡𝑉𝑉𝑠𝑠𝑡𝑡+ = 𝑆𝑆𝑉𝑉
𝐹𝐹𝑃𝑃𝜌𝜌

� ratio indicates a diagnostic test result associated with the presence of RF 
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signature similarity as a benign (positive) condition, whereas the absence of RF transmission 

similarity indicates an infectious (negative) condition using a LR negative �𝐿𝐿𝑅𝑅𝑡𝑡𝑉𝑉𝑠𝑠𝑡𝑡− = 𝐹𝐹𝑇𝑇𝜌𝜌
𝑆𝑆𝑝𝑝
� [79].  

For posterior predictions, we can use a LR for positive �𝐿𝐿𝑅𝑅𝑆𝑆𝑢𝑢𝑆𝑆+ = 𝑃𝑃𝑃𝑃𝐿𝐿
𝐹𝐹𝑇𝑇𝜌𝜌

� and negative 

�𝐿𝐿𝑅𝑅𝑆𝑆𝑢𝑢𝑆𝑆+ = 𝐹𝐹𝐷𝐷𝜌𝜌
𝑇𝑇𝑃𝑃𝐿𝐿

� subjects to make the usefulness of a diagnostic test more generalizable.  We avoid 

zero (i.e. replaced with 0.1) and infinite values (i.e. replaced with 10,000) for the LRs adapted 

from [80]. 

• 5.2.8 A Representative SATCOM Network 
In social or electronic communities, trust is a rating assigned by a perceiving (receiver) 

agent indicated by ′𝑑𝑑′ with respect to a transmitting source agent indicated by ′𝑟𝑟′ for a specified 

time 𝑡𝑡 [71] .  The term con-man is adapted from [72] to indicate requester 𝑟𝑟 who takes advantage 

of 𝑑𝑑 during a series of access request transactions.  During such transactions the con-man presents 

acceptable credentials that are contained within standardized RF modulations of message ′𝑚𝑚′ that 

lead to a classification of Cooperation ′𝑅𝑅′ between 𝑟𝑟 and 𝑑𝑑.  Such cooperation may lead to the 

execution of infectious payload data contained within the body of 𝑚𝑚 transmitted by 𝑟𝑟.  Then, when 

it comes to a high –risk interaction, the con-man will defect.  That is, 𝑟𝑟 initiates a Trojan-horse 

transaction that attempts to defraud 𝑑𝑑.  The trust rating about the reputation of 𝑟𝑟 updates by 𝑑𝑑 

following fraud detection and transactional state classification of Defection 𝑒𝑒.    At this point, the 

con-man either attempts to regain lost trust or stop future communication with 𝑑𝑑.  To regain trust, 

𝑟𝑟 will again initiate several transactions that are 𝑅𝑅 in nature.  Here, 𝑟𝑟 hopes to deceive 𝑑𝑑 again by 

masking its true infectious intentions by presenting logically correct message credentials while 

inserting some unauthorized payload.  
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Table 22. Con-Resistant Interaction Trust Algorithm [72] 

Cooperation Defection 
 

T′sd = Tsd +  α(1− Tsd)     (1) T′sd =
Tsd + β

1 −min(|Tsd|, |β|)     (6) 𝑇𝑇𝑠𝑠𝑑𝑑 > 0 

T′sd =
Tsd + α

1 −min(|Tsd|, |α|)    (2) T′sd = Tsd +  β(1− Tsd)      (7) 𝑇𝑇𝑠𝑠𝑑𝑑 < 0 

T′sd = α           (3) β = �β − γd(1 + β)�         (8) 𝑇𝑇𝑠𝑠𝑑𝑑 = 0 

α = min(α + γc(α0 − α),α0)   (4) γd = 1 e� ∗ |Tsd| =
|Tsd|

e
         (9)  

γc = 1 − |β|     (5) α = 1 − |β|           (10)  

 

Several well-known con-man attack patterns are recreated in a simulated ecosystem using 

attack profiles of θ = 5, 10, 15, 20, 25, 30, 35 and 40.  In such profiles, the con-man will conduct 

a series of θ transactions that would be classified as 𝑅𝑅 and then immediately initiate a transaction 

defection classification.  A rating of '0' indicates the absence of trust. Initial trust ratings begin at 

'0' with adjustments occurring throughout directed session interactions from  𝑟𝑟 to 𝑑𝑑 [71].  As link 

session interactions occur, trust ratings are strengthened or weakened for the next (t +1) transaction 

period and is based on the perspective of authenticator 𝑑𝑑. An authenticator (device 𝑑𝑑) is defined 

as having RF-DNA credentials of statistically trusted RF-Events that are emplaced in its local 

memory to enable self-evident origin integrity of trusted sources as suggested in [25]. 

Duncan employs a two-state system classification scheme according to 𝑑𝑑’s transactional 

classification and the current level of the ITV assigned by 𝑑𝑑’s logical authentication mechanisms.  

Based on the value of the ITV during a session, Duncan employed a three level policy response 

scheme where he arbitrarily selected a policy-based threshold limit of -0.5 as the lowest acceptable 

ITV rating that could occur during a series of 200 transactions.   A Level-1 response is referred to 

as “Trust Management Event Logging Only” where the response actions of the authenticating 

device includes a comparison check of the command authentication count upon receipt of a new 

RF-Event and the associated ITV is calculated for the authentication count marker.  
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Once the ITV for authentication count reaches the decision-rule’s distrust threshold, an 

alert is logged indicating excessive invalid attempts.  A Level-2 response, termed “Trust 

Management Event Logging and Prevention,” includes the responses of a Level-1.  However, once 

the ITV for authentication count reaches 𝑇𝑇ℎ command processing halts for anonymous users and 

an alert is logged indicating excessive invalid command attempts.  Meanwhile, a Level-3 policy 

response “Trust Management Event Logging, Prevention and Recovery” include responses of 

Level-1 and Level-2 and   once the ITV for authentication count reaches 𝑇𝑇ℎ command processing 

halts for anonymous users and an alert is logged indicating excessive invalid command attempts. 

A legitimate ground station must unlock satellite commanding and the CTMS via a logical 

credential trust mechanism to resume commanding operations. 

Two transactional state extensions adapt the expressiveness of the con-resistant interaction 

trust algorithm to provide insight into the nature of a con-man’s origination as being an insider vs. 

outsider threat.  In the extension scheme, RF fingerprinting is employed to augment the logical 

authentication scheme by using physical attributes of fixed RF transmission benchmark origins.  

An interactive state 𝐸𝐸 occurs when the logical diagnostic test result is positive and the physical RF 

origin similarity is acceptable.  An interactive state 𝐹𝐹 occurs when the logical result is negative for 

a binary credential match and contains acceptable RF origin similarity levels.   The extended multi-

factor authentication scheme aims to improve the posterior probability estimates of the isolated 

authentication mechanism used in uncertainty.  

A 𝐵𝐵𝑀𝑀𝑛𝑛𝑝𝑝𝑟𝑟 and forgiveness factor support the extensions.  When both authentication 

mechanisms (i.e. logical and pathological similarity exists) test positive for benign similarity 

levels, an optional 𝐵𝐵𝑀𝑀𝑛𝑛𝑝𝑝𝑟𝑟 provides an increase in the reward step-size. The forgiveness factor (Φ) 

is offers an optional delayed 𝐿𝐿𝑒𝑒𝐷𝐷𝑒𝑒𝑝𝑝 − 3 response for specific situations. 
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Table 23.  Con-Resistant Interaction Trust Algorithm  State Extensions  
Two Cooperation (C) Defection (D) 
Four C* E F D* 

Ex
te

ns
io

ns
 𝒔𝒔 = 𝒔𝒔 ∗ (𝑩𝑩𝑪𝑪𝑩𝑩𝑪𝑪𝒘𝒘) Φ = β𝑀𝑀𝑀𝑀𝐷𝐷 Φ = Φ[𝐻𝐻𝐻𝐻,𝐿𝐿𝑇𝑇] Φ = β𝑀𝑀𝐴𝐴𝑀𝑀 

𝜶𝜶 = 𝑪𝑪𝒊𝒊𝑩𝑩(𝜶𝜶 + 𝜸𝜸𝒄𝒄(𝜶𝜶𝟎𝟎 − 𝜶𝜶),𝜶𝜶𝟎𝟎)  (𝟒𝟒) β = β𝑠𝑠𝑡𝑡𝑎𝑎𝑃𝑃𝑡𝑡 ∗ Φ  𝛽𝛽 = �𝛽𝛽 − 𝛾𝛾𝑑𝑑(1 + 𝛽𝛽)�𝛷𝛷 𝛽𝛽 = 𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑃𝑃𝑡𝑡 ∗ 𝛷𝛷  

𝜷𝜷 = 𝜷𝜷 𝛼𝛼 = 1− |𝛽𝛽|     (10) 𝛼𝛼 = 1− |𝛽𝛽|     (10) 𝛼𝛼 = 1− |𝛽𝛽|     (10) 
 

5.3 Methodology:  2-Factor RF-DNA Credentialing  

Figure 30 represents the RF-DNA collection and networking experimentation circuit. Each 

circuit component is labeled with a letter and role for representative icon reference. For example, 

the device used to generate the initial message for collections is shown as (label | description) 

PC1| PC1: msg (message) generator.  The laptops in Figure 30a and Figure 30f are 

identically configured with the following; LabView 2014 with RT Modulation Tool Kit, Math 

Script. Windows 10, (HP Zbook 15) with 32GB RAM, 500GB DDRL 4DM, 5400 RPM, integrated 

NIC, I Core i7-4800MQ processor.  Software includes Microsoft Office 2013, Matlab 2015a, 

2016a and Jump Pro 12.1.    Each physical circuit had physically distinct hardware, cables and 

antennae and could transmit or receive.  This experiment focused specifically on a simplex uplink 

transmission scenario.  

1) Transmission Circuit (Ground Station) 
𝑇𝑇𝑅𝑅𝐴𝐴, 𝑇𝑇𝑅𝑅𝐵𝐵 and 𝑅𝑅𝑅𝑅𝐶𝐶 are national instrument USRP-2922 software defined radios that differ 

by serial number only.  In Figure 30a and Figure 30b represent that baseband logical message 

generator (msg), which transmits commands to the front end transmission device 𝑇𝑇𝑅𝑅𝐴𝐴 in Figure 

30c (USRP 2922) for final modulation onto the uplink medium.   Devices 𝑇𝑇𝑅𝑅𝐴𝐴 and 𝑇𝑇𝑅𝑅𝐵𝐵 (red USRP 

2922 in Figure 30c) are the transmitters under test.  GS1 is defined as the benchmark validation 

test for 𝑇𝑇𝑅𝑅𝐴𝐴 emissions as observed by receiver (authenticator) 𝑅𝑅𝑅𝑅𝐶𝐶.   
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𝑇𝑇𝑅𝑅𝐴𝐴’s RF emissions are collected for signature profile benchmarking.  𝑇𝑇𝑅𝑅𝐵𝐵 represents an 

arbitrary opponent transmitter that attempts to forge the credentials of 𝑇𝑇𝑅𝑅𝐴𝐴.   

2) RF-Event and Environmental Considerations 
A 2-FSK modulation scheme is used to transmit msg over FM using a carrier frequency of 

449.9MHz.  An 100kHz offset is set from the center frequency of 450MHz.  Each pulse duration 

is approximately 6.399ms.  The receive circuit had a tunable bandwidth selector that was set to 

20kHz and detected each pulse using a tunable triggering mechanism based on the magnitude of 

the amplitude.  The FSK deviation was set to 1.  There were eight total RF-measurements that 

were selected arbitrarily to include the instantaneous amplitude, frequency, and phase.  Preliminary 

results extracted RF-DNA fingerprints near the preamble of ICOM-9100 amateur radios used in 

an operational ground station circuit, where the amplitude provided the greatest accuracy for 

correct classification.   Therefore, the variance, skewness and kurtosis were set for collection using 

the USRP SDRs.  Finally, the root mean squared error of the amplitude was collected for each 

pulse.  For each RF-Event pulse (Figure 30d) successfully received by 𝑅𝑅𝑅𝑅𝐶𝐶 (Figure 30g), the RF-

DNA is extracted from 10 fixed and equally spaced sub regions plus the full wave regions using 

complex real and imaginary parts of the analog waveform.   This brings the total number of distinct 

RF-DNA contained within a complete collection to ( [8 features] * [22 sub-regions]) 176 RF 

distinct native attributes for possible selection as key discriminating factors.  There are three output 

files that are generated by 𝑅𝑅𝑅𝑅𝐶𝐶 following RF-DNA collection.  Initially, 𝑅𝑅𝑅𝑅𝐶𝐶 is trained to learn the 

RF-DNA of each trusted device 𝑇𝑇𝑅𝑅𝑖𝑖.   After that, the benchmark signature is validated for accuracy 

using new RF-DNA collections from unseen RF-Events from the same device.  After 

benchmarking, 𝑅𝑅𝑅𝑅𝐶𝐶 is placed in testing mode to assess the level of accuracy to diagnose messages 

which contain potentially infectious credentials. 
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a) Data1: 4-State Transaction Classification of Logical and Pathological Credential 
Pairs 

Data1 (Figure 30h) is used to classify the transactional state of the uplink transmission 

using a 4-State classification system and two factors.  Factor 1 is represented by the logical 

credential, while factor 2 is the RF-DNA fingerprint of the logical credential as specified by policy.       

b) Data 2:  RF-DNA signature Comparisons 
The RF-DNA benchmark credential (Figure 30i) consists of the distribution of RF-

Measurements previously defined by policy.  The benchmark consists of (8 RF-Measurement 

features * 22 real and imaginary regions of interest) for the full complimentary RF-DNA set. We 

analyze eight of these 176 using the real values of the full wave characteristics. 

c) Data 3:  Baseline RF-biomarker Levels: 
The distribution of measurements obtained from the RF-DNA subset is then assessed using 

Euclidean distance to assess the level of self-similarity that each feature has with itself as depicted 

in Figure 30j.  The average result is used as the baseline RF-Biomarker similarity level to compare 

new RF-Events to the benchmark RF-DNA signature previously templated using Data2 above. 

(b)
TNC

PC1: msg Generator
“Hello World” = w

(a)

PC2: 
RF-Measurement(s)
Extractor/Collector

(f)

Path Conf:
-30dB 

(Cable only)
(e)

Transmitter (Tx):
USRP-2922:

(c)
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Figure 30. Physical Network Diagram and Data output for Experimentation 
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Three software defined radios devices 𝑇𝑇𝑅𝑅𝐴𝐴 = 𝑟𝑟𝑖𝑖, 𝑇𝑇𝑅𝑅𝐵𝐵 = 𝑟𝑟𝑎𝑎, and 𝑅𝑅𝑅𝑅𝐶𝐶 are configured 

transceivers of RF modulated messages in an interoperable network ecosystem.  𝑇𝑇𝑅𝑅𝐴𝐴 and 𝑇𝑇𝑅𝑅𝐵𝐵 were 

set up as transmitters, while 𝑅𝑅𝑅𝑅𝐶𝐶 was configured as the satellite receiver.  Distinct hardware circuits 

of 𝑇𝑇𝑅𝑅𝐴𝐴 & 𝑇𝑇𝑅𝑅𝐵𝐵 are logically equivalent in configuration for interoperability and standardization of 

commercial off the shelf equipment.  Prior to experimentation, RF-DNA fingerprints of 𝑇𝑇𝑅𝑅𝐴𝐴 and 

𝑇𝑇𝑅𝑅𝐵𝐵 are collected using 𝑅𝑅𝑅𝑅𝐶𝐶 for benchmark template development.  

Finally, probability classification processing was done using MATLAB version 2015a and 

LabVIEW’s Math Script 2015 module.  𝑅𝑅𝑅𝑅𝐶𝐶 trains on 1100 trusted RF-Events from 𝑇𝑇𝑅𝑅𝐴𝐴 while 

transmitting an authorized command (message-1) to compose a trusted RF-DNA fingerprint 

benchmark template.  The same RF fingerprint classifier was then tested using 150 new claimed 

RF-Events for 𝑇𝑇𝑅𝑅𝐴𝐴 while transmitting from the same authorized state for benchmark verification.   

The process repeats for three additional commands for 𝑇𝑇𝑅𝑅𝐴𝐴 to provide a total of four 

benchmarks and four test sets for verification. Each device connects to separate laptop PC using 

LabVIEW 2015 to generate complex RF transmissions that include a 48-bit preamble, 48-bit 

payload (Credential ID) and 48-bit postamble.  Authenticator device 𝑅𝑅𝑅𝑅𝐶𝐶 receives, and 

demodulates transmissions of 𝑇𝑇𝑅𝑅𝐴𝐴 and 𝑇𝑇𝑅𝑅𝐵𝐵 for credential authentication, where 𝑇𝑇𝑅𝑅𝐴𝐴 is randomly 

selected as the trusted transmission source, while 𝑇𝑇𝑅𝑅𝐵𝐵 is arbitrarily untrusted.  We designate the 

authorized transmissions originating from 𝑇𝑇𝑅𝑅𝐴𝐴 ‘command-1’ =Benign.  This research only 

considers eight arbitrarily selected RF measurements for proof of concept demonstration.  We 

designate all commands from 𝑇𝑇𝑅𝑅𝐵𝐵 and ‘command-2’ from 𝑇𝑇𝑅𝑅𝐴𝐴 as {All 0thers = Infectious}.  The 

system is initialized using a starting low trust reward step-size for (𝜶𝜶𝒘𝒘𝑶𝑶𝒔𝒔𝒊𝒊𝑶𝑶 = 0.1).  This is 

(Bonus = Bonus + 𝜶𝜶𝒘𝒘𝑶𝑶𝒔𝒔𝒊𝒊𝑶𝑶).  The distrust penalty, (𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑃𝑃𝑡𝑡 = −0.4).   
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To assess the effect on the Level-3 response, during the abuse case, multi-factor 

authentication using logical and pathological credential mechanisms are used.  Forgiveness is used 

to adjust the penalty step-size when the new sample matches an RF fingerprint benchmark.  Low 

forgiveness Φ𝐿𝐿𝑇𝑇 = 0.9451 is used to delay a Level-3 response.  High forgiveness, Φ𝐻𝐻𝐻𝐻 = 0.97 is 

used to avoid an uplink shut-down altogether while maintaining the capability for an 

authentication device to track the distrustful behavior of an offending RF transmitter. The 

arbitrarily selected thresholds for each diagnostic test is provided in Table 4.  In the abuse case 

experiment, a Bayesian RF fingerprint verification filter classifies a new set of 43 benign and 107 

infectious (not-benign) messages from two physically distinct SDRs while logging new RF-

measurements of the new RF-Event.    To establish a common reference for test validation, all 

received messages are contained in a modulated transmission RF-Event and are logically identical 

(i.e. the logical/binary bit streams are the same).    

A simple random selection of infectious RF-Events replaces defective transactions ‘0’ 

using a well-known con-man attack profile model 𝑆𝑆𝑅𝑅𝑇𝑇(5) [71].    A comparison of the GS dataset 

reference and known benchmark levels provides the resulting classification match scores using 

associated diagnostic thresholds or decision rules in Table 4. The first 49 transactions of the GS 

truth reference represents legitimate command transmissions with 10% bit errors originating from 

𝑇𝑇𝑅𝑅𝐴𝐴, where ‘command-2’ from 𝑇𝑇𝑅𝑅𝐴𝐴 is randomly selected as the representative error samples. The 

random noise replacement index values for this experimental run is; [5;11;18;22;26;37].  The 

index replacement’s truth column updates to truth condition code = 2.  Next, for transactions 50 -

150, a simple random selection takes a 𝑇𝑇𝑅𝑅𝐵𝐵’s pool of ‘command-1’ and ‘command-2’ RF-Event 

transmissions and replaces a known benign entry in the reference dataset.   
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Finally, the gold standard column (14) was created such that all commands that remain for 

𝑇𝑇𝑅𝑅𝐴𝐴 ‘command-1’ retained the value of ‘1’, while all other commands were given a value of ‘0’.  

• Decision Rules and Treatment Thresholds 
The treatment responses are summarized with the following pseudo code using the 

threshold settings from Table 4.  Each classifier’s performance is evaluated for classification 

accuracy of the truth reference GS file before and after Bayesian aggregation. The intrinsic 

accuracy and predictive usefulness results will be used to provide decision-support 

recommendation to treat, do nothing or ask for more diagnostic testing towards mitigation of 

network-disease.  Using the raw counts of  TN, TP, FN and FP, the priori classification 

probabilities of TPR, FPR, TNR, and FNR will be computed to provide the pre-test classification 

probabilities and the overall intrinsic accuracy (𝑇𝑇𝑅𝑅𝑅𝑅).  The usefulness of posterior prediction 

estimation is assessed by evaluating the probabilities for the PPV, FDR, NPV and FDR 

classifications.   

Table 24.  Network Treatment Response 
When [𝑇𝑇ℎ1 = 𝐹𝐹]; //No Infection suspected 

If  [𝑃𝑃𝑃𝑃𝑁𝑁 ≤ 𝑇𝑇ℎ4] ∩ [𝐹𝐹𝑒𝑒𝑅𝑅 ≥ 𝑇𝑇ℎ5], 
//EVIDENCE UNCERTAIN 

     ASK FOR MORE DIAGNOSTIC TESTING 
Else 

//REFUTABLE EVIDENCE 
     DO NOTHING 

END 
When[𝑇𝑇ℎ1 = 𝑇𝑇] ; Infection of Log Files Suspected 

If  [𝑇𝑇𝑅𝑅𝑅𝑅 ≤ 𝑇𝑇ℎ2] ∪ [𝐹𝐹𝑃𝑃𝑅𝑅 > 𝑇𝑇ℎ3] 
//EVIDENCE UNCERTAIN 

  ASK FOR MORE DIAGNOSTIC TESTING 
Else 
If  [𝑒𝑒𝑃𝑃𝑁𝑁 ≤ 𝑇𝑇ℎ6]  ∩ [𝐹𝐹𝑂𝑂𝑅𝑅 > 𝑇𝑇ℎ7] 

//EVIDENCE UNCERTAIN 
  ASK FOR MORE DIAGNOSTIC TESTING 
Else 

//CONCLUSIVE EVIDENCE 
  TREAT FOR NETWORK-DISEASE MITIGATION 

END 
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A screening of RF-Biomarker candidates selects the highest pre-test and post-test 

accuracies with minimal errors while considering the treatment decision rules from Table 4 to 

establish performance cut-offs. Generally, higher intrinsic accuracy is better and higher posterior 

predictive accuracy is better. The top performing classifiers are selected for Bayesian aggregation 

with the aim of improving the posterior classification estimations and reported as the best 

predictors of network-disease for device A.  

Table 25. Treatment Decision-Rules  
Threshold 

/ Rule Parameter Value Default 

𝑻𝑻𝑻𝑻𝟎𝟎 Screen? [Yes/No] Yes 
𝑻𝑻𝑻𝑻𝟏𝟏 Symptoms? [T/F] T 
𝑻𝑻𝑻𝑻𝟐𝟐 ACC (0:1) .9 
𝑻𝑻𝑻𝑻𝟑𝟑 FPR (0:1) .1 
𝑻𝑻𝑻𝑻𝟒𝟒 PPV (0:1) .95 
𝑻𝑻𝑻𝑻𝟓𝟓 FDR (0:1) .05 
𝑻𝑻𝑻𝑻𝟔𝟔 NPV (0:1) .95 
𝑻𝑻𝑻𝑻𝟗𝟗 FOR (0:1) .05 

𝑭𝑭𝑶𝑶 
Global 

Euclidean 
Distance 

(0:1) .05 

𝑶𝑶𝑶𝑶𝑶𝑶 
Local 

Majority [0:b] 5 

𝒁𝒁𝑶𝑶𝑶𝑶 
Risk 

Zones [0:4] 2.125 

Three diagnostic classifiers are assessed for classification accuracy against the CTMS’s 

baseline logical authentication classifier only. 1.) Diagnostic test 𝑒𝑒𝑡𝑡 provides a binary 

classification as to whether a new RF-Event’s RF-measurements falls within tolerance𝑡𝑡𝑀𝑀𝑝𝑝.  2.)  An 

ordinal valued diagnostic test 𝑂𝑂𝑑𝑑𝑡𝑡 employs an arbitrary decision-rule threshold value of 

‘5’(𝑂𝑂𝑑𝑑𝑡𝑡 = 5). 3.) Finally, a continuous valued diagnostic test employs a decision-rule threshold 

using risk zones is set such that (𝑍𝑍𝑑𝑑𝑡𝑡 = 2.125).  Three treatment response threshold values are 

arbitrarily chosen to demonstrate the experiments’ proof of concept.  The 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 = 20%, GS 

file size is 𝑛𝑛 = 150 and threat 𝜌𝜌 = 20%.  
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The initial log file screening tolerance is 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇𝑇𝑇𝐿𝐿 = (150 ∗ .71 ∗ .71) = 37.  For a 

specified screening classifier, a decision rule to continue treatment against network-disease is 

assisted using an initial threshold rule as  

𝑇𝑇ℎ0 = �𝑇𝑇,    𝑆𝑆𝑝𝑝𝑚𝑚𝑅𝑅𝑀𝑀𝑝𝑝𝑛𝑛𝑡𝑡𝑇𝑇𝑇𝑇 ≥ 𝑆𝑆𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇𝑇𝑇𝐿𝐿;
𝐹𝐹,                                   𝑀𝑀𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑅𝑅𝑟𝑟𝑒𝑒.                                                                (12) 

 

5.4 Extension Validation and Classification Results 

5.4.1 Diagnostic Accuracy Results 

5.4.1.1 Raw Diagnostic Counts 
The diagnostic test results for each classifier in Table 7.  Of the 49 total RF transmissions 

originating from 𝑇𝑇𝑅𝑅𝐴𝐴, only 43 are truly benign transmissions of command-1, while all other 

transmissions are infectious. The baseline diagnostic classifier (𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆), using the logical decision-

rule ITV and transaction state classification had 43 TPs, and 17 TN test results.  However the 

𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 diagnostic test has 90 FP errors.  The composite RF fingerprint classifier decreased in 

performance compared to the CTMS baseline had 93 FPs and only identified 14 of 107 infectious 

samples. The ordinal valued classifier 𝑂𝑂𝑑𝑑𝑡𝑡 had 107 infectious tests, 42 benign tests and a single 

FN test.  Moreover, 𝑂𝑂𝑑𝑑𝑡𝑡’s 𝑇𝑇𝑅𝑅𝑅𝑅 = 99.33% is a significant improvement over baseline’s 𝑇𝑇𝑅𝑅𝑅𝑅=40% 

and meets screening all requirements for conclusive treatment response.  Similarly, classifier 𝑍𝑍𝑑𝑑𝑡𝑡 

out performs the baseline diagnostic test with 𝑇𝑇𝑅𝑅𝑅𝑅 = 98.67% and two counts of FN errors. Table 

26 provides a summary of the diagnostic 𝑇𝑇𝑅𝑅𝑅𝑅 performance.  

5.4.1.2 Pre-Test (Priori) Diagnostic Classification Probabilities 
The priori classification probabilities are provided in Table 27.  The Diagnostic classifier 

𝑒𝑒𝑡𝑡 underperforms the baseline 𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 by three additional FPs and classifies true negative 

(infectious) RF samples at a reduced rate of 𝑆𝑆𝑝𝑝 = 13.08%.  Fortunately, 𝑒𝑒𝑡𝑡 does not have any FN 
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classification errors. 𝑂𝑂𝑑𝑑𝑡𝑡’s, results indicate significant improvement in reducing the FPR to zero, 

while increasing 𝑆𝑆𝑝𝑝 to 100%. The 𝑆𝑆𝑒𝑒 = 97.67% of 𝑂𝑂𝑑𝑑𝑡𝑡 shows a drop in performance over the 

𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆, however high FPR rates of 90% and 93% were significantly high and indicates significant 

acceptance of RF credentials of dissimilar RF benchmark origins. Finally, the risk zones classifier 

saw similar performance improvements as 𝑂𝑂𝑑𝑑𝑡𝑡 over 𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 and 𝑒𝑒𝑡𝑡. The risk zone classifier has a 

higher false negative rate of 4.65% above the ordinal classifier’s 2.23%, which increases the rate 

of rejection for benign credentials.  The 𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 and 𝑒𝑒𝑡𝑡 diagnostic performance fails arbitrary 

threshold requirements and requires more diagnostic.  Classifiers 𝑂𝑂𝑑𝑑𝑡𝑡 and 𝑍𝑍𝑑𝑑𝑡𝑡 meet arbitrary 

performance requirements for 𝑇𝑇𝑅𝑅𝑅𝑅 ≥ 90% and 𝐹𝐹𝑃𝑃𝑅𝑅 ≤ 10%.  

Table 26.  Abuse Case Interactive State and diagnostic count results 

 
2*/ 4-System State    Counts  

True(1) False (0) Benign(1) Infectious(0) Intrinsic 
Accuracy  

Diagnostic 
Test 

(Threshold) 

C* 
(11) 

F 
(01) 

E 
(10) 

D* 
(00) TP FN FP TN ACC 

CTMS(P) 133 - - 17 43 0 90 17 0.4000 

𝑭𝑭𝑶𝑶= (0.05) 120 13 16 1 43 0 93 14 0.3800 

𝑶𝑶𝑶𝑶𝑶𝑶= (5) 42 0 91 17 42 1 0 107 0.9933 

𝒁𝒁𝑶𝑶𝑶𝑶= (2.125) 41 0 92 17 41 2 0 107 0.9867 

 

5.4.1.3 Post-Test (Posterior) Diagnostic Classification Probabilities 
When an RF-Event tested positive using the 𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 baseline diagnostic classifier, tests of 

originated from 𝑇𝑇𝑅𝑅𝐴𝐴 using ‘command-1’ tested as having authentic credentials 32.33% of the time. 

Unfortunately, the low 𝑆𝑆𝑝𝑝 = 15.89% coupled with a high 𝐹𝐹𝑃𝑃𝑅𝑅 = 84.11%, the usability of the 

𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 for isolated authentication in a contested ecosystem does not meet arbitrary thresholds from 

Table 4.  As such, the baseline 𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 and the classifier 𝑒𝑒𝑡𝑡, did not meet initial screening 

requirements when at least 37 infectious samples are discovered.  
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Table 27.  Con-Man Abuse Case Probability Classification Results 

 

Classification Probabilities (%)   

Priori Accuracy 
Likelihood 

Ratios (Tests) Posterior Accuracy 
Likelihood 

Ratios 
(Subjects) 

Diagnostic 
Test 

(Threshold) 

Se 
TPR FNR FPR Sp 

TNR LR+ LR- PPV FDR FOR NPV LR+ LR- 

CTMS 1 0 0.8411 0.1589 1.19 0.629 0.3233 0.6767 0 1 3.23 0.6767 

𝑭𝑭𝑶𝑶 1 0 0.8692 0.1308 1.15 0.765 0.3162 0.6838 0 1 3.162 0.6838 

𝑶𝑶𝑶𝑶𝑶𝑶 0.9767 0.0233 0 1 9.767 0.023 1 0 0.0093 0.9907 107.53 0.1009 

𝒁𝒁𝑶𝑶𝑶𝑶 0.9535 0.0465 0 1 9.535 0.047 1 0 0.0183 0.9817 54.65 0.1019 

 

When aggregating classifiers 𝑒𝑒𝑡𝑡 and 𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 we improved the PPV to 57.8%, which is 

marginally better than random guessing.  The PPV significantly improves to 100% when combined 

with any of the three augmentation classifiers.  Before aggregation, the NPV for 𝑅𝑅𝑇𝑇𝑀𝑀𝑆𝑆 

performance was 100%, meaning that the chance of being correct when tested positive for 

infectious credentials, the credentials were truly infectious (forgeries).  The NPV improved to 

100%, which relates to zero false negative errors.  Results also show that a significant improvement 

for 𝑂𝑂𝑑𝑑𝑡𝑡 and 𝑍𝑍𝑑𝑑𝑡𝑡 achieves 100% NPV after Bayesian aggregation with CTMS priori classification. 

The aggregation of all classifiers further improves posterior classification accuracy results to 100% 

NPV and 100% PPV with 0% FDR and FOR errors.  In this case, we can predict the probability 

of having received authentic credentials contained within a modulated RF-Event among known 

RF-Events whose credentials tested positive with 100% likelihood. Prior to aggregation, the 

CTMS’s 67.67% FDR significantly reduces to 0% forged credential acceptance when combined 

with RF-Biomarker diagnostics.  The posterior probabilities are in Table 28. 

5.4.1.4 Benchmark Visualization Results 
After selection of the most useful diagnostic network classifiers 𝑂𝑂𝑑𝑑𝑡𝑡, 𝑍𝑍𝑑𝑑𝑡𝑡 or a Bayesian 

aggregation of the baseline classifier with either 𝑂𝑂𝑑𝑑𝑡𝑡, 𝑍𝑍𝑑𝑑𝑡𝑡 or all is considered in developing a 

diagnostic visualization.   
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Using the LR ratios, we can see that the best indicator before aggregations are classifiers 

𝑂𝑂𝑑𝑑𝑡𝑡 and 𝑍𝑍𝑑𝑑𝑡𝑡 for both benign and infectious tests and subjects.  Such visualization aims to show a 

Cyber Operator an intuitive image that describes the RF origin similarity levels of a known RF 

fingerprint benchmark compared to a new RF fingerprint extraction from a claimed trusted RF 

origin.   

Table 28.  Bayesian Aggregation of Pre-test Classifiers  

 Priori Aggregation of 
Diagnostic Evidence  

Posterior Origin Integrity Classification Probability 
(%) of Claimed Credential 

Benign (1) Infectious (0) Likelihood Ratios  
(Subjects) 

PPV FDR FOR NPV LR+ LR- 
𝑪𝑪𝑻𝑻𝒊𝒊𝑺𝑺 ∩ 𝑭𝑭𝑶𝑶𝑶𝑶 0.577 0.4213 0 1 5.77 0.4213 

𝑪𝑪𝑻𝑻𝒊𝒊𝑺𝑺 ∩ 𝒁𝒁𝑶𝑶𝑶𝑶 1 0 0 1 10 0.1000 

𝑭𝑭𝑶𝑶 ∩ 𝑶𝑶𝑶𝑶𝑶𝑶 1 0 0 1 10 0.1000 

𝑶𝑶𝑶𝑶𝑶𝑶 ∩ 𝒁𝒁𝑶𝑶𝑶𝑶 1 0 0.0004 0.9996 10 0.1000 

𝑪𝑪𝑻𝑻𝒊𝒊𝑺𝑺 ∩ 𝑶𝑶𝑶𝑶𝑶𝑶 ∩ 𝒁𝒁𝑶𝑶𝑶𝑶 1 0 0 1 10 0.1000 

𝑪𝑪𝑻𝑻𝒊𝒊𝑺𝑺 ∩ 𝑭𝑭𝑶𝑶 ∩ 𝑶𝑶𝑶𝑶𝑶𝑶 ∩ 𝒁𝒁𝑶𝑶𝑶𝑶 1 0 0 1 10 0.1000 

 

The trusted benchmark’s self-similarity score for 𝑇𝑇𝑅𝑅𝐴𝐴 benchmark versus itself is 75.74% 

appears as green bars in Figure 31.  The ‘red bars’ represents a truly infectious RF-Event samples 

originating from 𝑇𝑇𝑅𝑅𝐵𝐵, while the ‘blue bars’ indicates truly benign RF-Event samples transmitted 

by originating from 𝑇𝑇𝑅𝑅𝐴𝐴 As shown in (grey bars), RF-Biomarker candidates 1, 3, and 5 meet 

tolerance acceptance, while all others fail (i.e. candidates 2, 4, 6, 7 and 8).  The diagnostic 

visualization and the statistical tests indicate conclusive evidence for the presence of infectious 

credentials within the electronic device’s local log files.  Without treatment, acceptance of such 

credentials may lead to network-disease such as an untimely 𝐿𝐿𝑒𝑒𝐷𝐷𝑒𝑒𝑝𝑝 − 3 response, preventing 

access to critical uplink resources for non-offenders.   The benchmark contains 𝑛𝑛=1100 RF-Event 

samples of 𝑇𝑇𝑅𝑅𝐴𝐴 transmitting ‘command-1’ as a policy specified authorized transmission state.    
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In normal operation, RXC extracts new RF fingerprints from incoming RF-Events and 

conducts a benchmark similarity test using a set of useful RF-Biomarkers.  As shown, the 

diagnostic result indicates conclusive evidence of infectious credentials.  There are [𝑏𝑏 = 8] 

candidate RF-Biomarkers of network-disease. The Euclidean distance of dissimilarity is 

represented by non-overlapping green and gray bars. Candidate 𝑏𝑏2 indicates a likelihood for rf-

splitting (when a known benchmark similarity mean significantly differs from a tested batch of 

logically claimed identical samples) and has the most significant dissimilarity. 

 

Figure 31. Diagnostic similarity of benchmark (green bars) vs. new (gray bars). 

5.5 Chapter Conclusions and Future Work 

This research finds diagnostic likelihood ratio statistics of (107.53 and 54.65 for positive 

ratios and 0.1009 and 0.1019 for negative tests) respectively for 𝑂𝑂𝑑𝑑𝑡𝑡 and 𝑍𝑍𝑑𝑑𝑡𝑡, which also had the 

best intrinsic accuracy and predictive accuracy before aggregation.  
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Result shows useful diagnostic capability in discriminating between the pathology of 

benign and infectious RF transmissions among the tested samples using statistical RF-Biomarker 

analysis.  Before aggregation, conventional authentication specified fake credentials with 15.89% 

certainty.  Moreover, the positive posterior estimates of 32.33% using conventional tests suffers 

from intrinsically high 84.11% false positive rates when logical-only (bit-level) authentication 

schemes are employed in RF threat prevalent environments.  With the proposed method, the 

posterior predictive estimates for correct credential verification increase to 100%.   Moreover, 

using the conventional authentication approach, the false discovery rate of benign credentials 

reduces from 67.67% to 0% using the proposed method.  Given the results for diagnostic accuracy, 

we conclude that the log file of the RF authentication receiver is infected and an automated Level-

3 policy response is imminent.  Such a response manifests itself as a specific network-disease (e.g. 

denial of service) to all non-offending transmitters or concurrent ground-station users, which may 

be costly.   

Given the prevalence of RF credential infection (forgeries) discovered among log files, we 

suggest a network-disease treatment plan be immediately implemented to mitigate the loss of 

critical resource availability.   In the future, a more appropriate response may target the blocking 

of a specific RF origin.   Specifically, a consideration of smaller log-file batch sizes or even a pulse 

by pulse diagnostic approach is feasible using the proposed diagnostic methods.  The research 

proposal is recommended for infrastructure network applications that employ shared resource 

access from fixed wireless stations (e.g. fixed ground stations or power distribution nodes) to better 

understand and assess the pathological origin integrity of RF transmission origins in uncertainty.  

A consideration RF fingerprinting in multi-factor authentication schemes is very promising for 

network security augmentation. 
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VI. Research Conclusions 

6.1 Research Summary 

This dissertation advances network diagnostic utility methods to improve uplink access 

request authentication from fixed ground-stations through the application of multi-factor pairings 

of logical and physical RF credentials for origin integrity verification. An end-to-end physical RF 

network was demonstrated to verify the successful modulation and demodulation of four 

telecommands using software defined radios as a representative CubeSat network in a lab 

environment.  The proposal was validated using Bayesian aggregation to combine the performance 

of uncertain diagnostic tests (i.e. failed to meet arbitrary policy threshold accuracy), to improve 

posterior RF origin integrity classification accuracy to satisfy arbitrary policy specifications.  

Finally, the discovery of rf-splitting of a main RF characteristic in electronic transmission log files, 

was introduced as a specific RF-Biomarker of network-disease (e.g. uplink shut-down or DOS) 

caused by the repeated acceptance of infectious (forgery) credentials.  The overarching research 

questions this dissertation answers is: 

RQ1: Can we enhance logical (digital) credential authentication schemes using 

pathological RF-DNA credential diagnostics of RF transmissions?  Can useful RF fingerprint 

extractions from SATCOM networks improve uplink access authentication schemes?  If so, can 

insights gained from these techniques be effectively imparted to cybersecurity key players?  Can 

we enhance logical authentication mechanisms using statistical RF fingerprints pairings? Can RF 

fingerprinting methods improve uplink access availability for non-offenders in a shared resource 

operational ecosystem?  Chapter I answers these questions by examining four more specific and 

distinct research questions that comprise Chapters II-V of this dissertation.  
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A summary of each chapter’s research contributions follows.  Chapter II argues that RF 

fingerprinting methods such as AFIT’s RF-DNA fingerprinting of standardized fields (i.e. 

preamble), can be extended for any invariant and repeatable RF transmission unit size, so long as 

sufficient resources are available for useful processing.  Chapter II answers the research question: 

RQ2: Can non-standard regions of interest (ROIs) be used to develop statistically 

distinct RF fingerprint credentials from electronic device transmissions?  

To accomplish this, the method applies modifications of AFIT’s RF-DNA fingerprinting 

process to an entire invariant RF transmission region of interest for seven ICOM-9100 radios using 

a GMSK over FM pulse modulation scheme.  Empirical results were collected using an X-310 

SDR from AFIT’s fixed ground-station transmission circuit during the summer of 2015.  The same 

X-310 SDR receiver was used as the collections device for all ICOM RF fingerprint processing 

and classification.   Authentication accuracy results show that using a 66% reduction of the 

standardized ROI, that acceptable levels of accuracy (greater than 90%) are achieved for an 

estimated SNR > 25dB (collected SNR was ~18dB).  Non-standard customization is found to be 

promising for expressive policy specification of RF fingerprinting targets to support various 

organizational objectives.  The effectiveness of the non-standard ROI selection approach is 

validated using three software-defined radios (SDRs) configured in a simple directed network 

configuration.  It details an experiment performed with I-COM 9100 amateur radios where each 

radio is placed into a fixed transmission circuit and transmits an identical commands 𝑛𝑛 = 1000 

times.  A specified RF-DNA collections device captures the entire pulse duration of the power 

spectral density emission and RF fingerprints were generated over the entire waveform as the ROI.  

Results provide validation that the RF fingerprinting of an entire RF pulse ROI is capable of 

producing statistically useful benchmark distributions of the RF features.   
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Given the length of the transmission pulse, the integration of RF fingerprinting in similar 

SATCOM networks is feasible for authentication augmentation. 

Chapter III seeks to position the key insights gained from non-standard ROI selection using 

specified RF features in Chapter II and highlights the need for a proper definition of the phrase 

RF-Biomarker of network-disease—without obvious medical implications.  Because the definition 

of common abnormal network outcomes as a result of successful network attacks (e.g. DDoS, loss 

of command and control (C2) of a critical resource asset).  Because of multiple descriptive terms 

for RF-measurements as features, minutia detail, localization etc.… there is no standard set of 

terms which identifies any particular abnormal network behavior result.  Because a robust 

definition does not exist, it is not clear whether the number of available features used in comparison 

or priori effectiveness of a diagnostic test can be assessed for cost of implementation unless 

exhaustive effort clearly defines the statistical significance of each RF-measurement.  This chapter 

answers the research question: 

RQ3: How does the diagnostic accuracy of ordinal, continuous, binary and Bayesian 

decision rules compare against conventional methods?   How should threshold boundaries be 

determined?  Can the concept of extracting RF fingerprints from non-standard ROIs be extended 

to entire fixed message fields to support a subset of critical commands used for small infrastructure 

networks?  It does this by systematically developing RF signature benchmarks which improve 

posterior diagnostic classification using the top performing feature set (RF-Biomarkers) of an RF 

fingerprint feature that best dichotomizes benign vs infectious transmissions.  An arbitrary policy 

is used to specify the levels of tolerance acceptance in noise of device specific benchmarks.  
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AN RF-DNA credential benchmark pairing contains local templates of trusted logical and 

physical RF attributes of authorized device transmissions in a specific authentication receiver’s 

memory.   The accuracy of a specified authentication device’s local benchmark and is validated 

using representative truth reference (gold standard) which consists of new unseen logically 

equivalent transmissions that originate from benign (authorized transmission device) and 

infectious (unauthorized transmission device) origins.  More specifically, three diagnostic 

classifiers are developed for RF fingerprint classification performance comparisons using binary, 

ordinal and continuous valued data.  Decision rules are then developed to assess the overall 

Euclidean distance of new transmission origins using Gauss-Kronrod exact tolerance regions for 

simple binary classifications; to the benchmark templates.  An assessment of available RF features 

are considered that best indicate network-disease as the feature-set of RF-Biomarkers.  Results of 

gold standard testing show that a majority-vote diagnostic classifier and continuous risk zone 

weighting of custom diagnostic classifiers perform well against brute force discovery of the single 

best discriminator among available features.   

It demonstrates how visualization of a diagnostic result can be used as a decision-support 

cue when its findings are statistically significant.  Most beneficially, the LR statistic suggests the 

diagnostic performance is generalizable to additional RF device transmissions.  Further, the ordinal 

and continuous valued tests outperform the baseline conventional logical-only authentication test 

which had a high false positive rate of over 84%.  Based on the diagnostic performance from 

Chapter III, Chapter IV hones in on the challenge of indicating the true nature of an insider vs. 

outsider threat in threat prevalent ecosystems.    
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Chapter IV takes up the challenge of developing expressive insights into the pathology of 

RF transmissions by integrating multi-factor authentication as a way to classify the origin of RF 

transmission as more attributable to either an insider or outsider threat in prevalent ecosystems.  It 

answers the research question: 

RQ4: Can RF fingerprint evidence augment insider vs. outsider attribution without 

degrading conventional 2-State performance in uncertainty?  

More specifically, a multifactor authentication framework was introduced which pairs 

logical (bit-level) and pathological (physical) credentials in trusted network access authentication 

schemes using Bayes Theorem. The method provides an expressive 4-state classification scheme 

that improves the accuracy of posterior estimates of new credential claims.    Results show that 

combining physical RF transmission attributes as additional credential authentication factors 

(evidence) with logical CTMS authentication mechanisms enable expressive parameter-settings 

for dynamic threat mitigation.  Such a method provides classification risk targets that aim to 

improve a user’s ability to mitigate the risk of infectious credential acceptance.  An abuse case 

demonstrated the integration of RF fingerprinting into a logical-only CTMS authentication 

scheme. With RF fingerprinting “ON” coupled with insider forgiveness settings, a con-man threat 

is still detectable at the same rate or better using the improved method of expressing 4-staes when 

compared to the conventional abuse case which only considers two states.  Such classification state 

extensions enables user tracking of suspicious insider threat behavior.  In addition, targeting a 

specific infectious transmitter using 𝑅𝑅𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟 − 𝐸𝐸, provides expressive decision support for insider 

vs outsider threat attribution for enhanced mission support. 
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Finally, in Chapter V, attention is focused on applying the diagnostic usefulness of 

combined classifier performance against a con-man attack. Chapter V tackles the problem of 

rigorously characterizing the usefulness of RF fingerprint enhancement of logical mechanisms 

using a con-man abuse case from previous work.  A decision to treat a network for network-disease 

is explored using the benchmark, gold standard and priori diagnostic performance.  Arbitrary 

decision-rules and correlated thresholds are specified to assess the usefulness of aggregated 

diagnostic performance using a simple cost and benefit analysis for network treatment response 

recommendation.  When classifiers fail to meet threshold requirements, Bayes Theorem is used to 

improve the posterior estimates.  The chapter answers the research question: 

RQ5: Are simple random log file screenings of claimed RF-DNA credentials useful in 

indicating earlier warning and preventative treatment options?  What is the minimum 

screening size?  When should treatment be given?  What are the costs associated with treatment or 

non-treatment?  Using the LR statistic to indicate diagnostic generalizable usefulness metric, 𝑂𝑂𝑑𝑑𝑡𝑡 

and 𝑍𝑍𝑑𝑑𝑡𝑡 diagnostic tests had the best intrinsic accuracy and predictive accuracy before Bayesian 

aggregation.  This result suggests that ordinal and continuous decision-rule thresholding are useful 

in discriminating between benign and infectious RF transmission origins among tested samples.  

Before aggregation, logical-only credential authentication could specify a fake credential with 

15.89% certainty.  Moreover, the posterior estimates for credentials that tested authentic (positive) 

was correct 32.33% of the time, which is attributable to a high 84.22% FPR for the baseline test.  

Post Bayesian aggregation, we saw the posterior estimates increase to 100% correct classification, 

reducing the false positive error to 0%. Moreover, the FDR of benign credentials reduces from a 

67.67% baseline to 0% using the aggregation method. 
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In summary, a quantitative study was conducted to help mitigate unintentional acceptance 

of forged network access credentials in non-benign electronic environments.  Continued 

acceptance of forged credentials using conventional logical-only authentication, may lead to 

abnormal network behavior termed electronic network-disease (𝑒𝑒𝑒𝑒𝑒𝑒).  The proposed 𝑒𝑒𝑒𝑒𝑒𝑒 

treatment framework pairs logical and pathological RF attributes to improve diagnostic 

authentication schemes of claimed network credentials by; 

• Improves discrimination of Insider vs. Outsider Threats  

• Reduces conventional false positive rates by more than 84% and  

• Recommends treatment responses in uncertainty up to 100% predictive accuracy  

• Achieves generalizable likelihood ratios using ordinal and continuous valued 

decision-rules for diagnostic tests and posterior predictions of a subject’s condition. 

• Proposes RF-Biomarkers as standardized indicators of 𝑒𝑒𝑒𝑒𝑒𝑒.  

This research findings suggest that logical and pathological network access credential 

pairing does improve conventional authentication schemes in non-benign electronic RF 

environments.     

There are six main research contributions: 

1. Integrated trust management and RF fingerprinting concepts to improve 
authentication in uncertain RF network environments 

2. Extended Interactive Trust algorithm to express insider vs. outsider threats 
3. Developed generalizable diagnostic tests using RF-DNA localization 
4. Demonstrated AFIT’s 1st end-to-end multi-factor logical and pathological 

authentication network framework 
5. Introduced RF-Biomarkers as a standardized indicator of abnormal electronic 

network-disease (𝑒𝑒𝑒𝑒𝑒𝑒)  
6. Discovered RF-DNA Fingerprints for AFIT’s CubeSat uplink signal and 

presented rf-splitting  as an RF-Biomarker of 𝑒𝑒𝑒𝑒𝑒𝑒  
   



www.manaraa.com

 

182 

 

6.2 Future Work 

There are at multiple natural directions for future research continuation. First, more 

research should be conducted to validate the current research findings among larger device sets 

and command combinations of RF-DNA benchmarks.  Secondly, an investigative study of RF-

DNA ontology development that includes a naming convention for RF-Biomarkers should be 

studied for to discover broader applications of RF fingerprinting techniques and indicators of 

electronic abnormalities.  Thirdly, gold standard development that emphasizes the performance of 

the main RF characteristics and the central moments that are generated as RF fingerprint features 

should be investigated to identify the robustness of central moments vs. main characteristic 

measurements with respect to discriminability in noise.  Those features that provide statistical 

significance should be targeted for RF-Biomarker standardization and implemented into network 

treatment response policy.  More broadly, future research could examine the following questions:  

FRQ: Can an RF-DNA fingerprint bridge augment conventional authentication 

schemes to improve the origin integrity of full duplex RF transmissions between disparate 

network boundaries?  

In an RF fingerprinting bridging scheme, a policy-based RF credential pairing of logical 

and physical transmission attributes allows devices to artificially inherit the RF-DNA of its 

specified neighbors for the purpose of self-evident identification.  The term inherit refers to the 

physical emplacement of localized RF-DNA credentials into the memory of bridge authenticating 

device. Such inheritance is accomplished prior to deployment of an electronic communications 

network with the aim of supporting policy requirements and objectives. When multiple uplink 

access attempts originate outside of a satellite’s line-of-sight (LOS) receiving footprint and extends 

beyond P2P communications, a chain-of-trust is proposed.   
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Such a chain ensures that all intermediate devices forming the chain share the intermediate 

RF-DNA fingerprints of its authorized neighbors [81] as future research using bridging techniques.  

The objective of this future research proposal is to explore control boundaries of electronic network 

border crossings using paired credential exchanges through an RF-DNA bridge relay. In this effort, 

two or more distinct BiONets have some agreed upon desire to communicate between each other 

and have a policy that allows for such communication.  The policy aims to apply RF-DNA 

fingerprinting and CTMS concepts in order to enable self-evident authentication to occur across 

network boundaries.  In isolation, a disparate network that employs RF-DNA marker exchanges 

for their administered devices lack inherent self-evident credentials of external logical credentials 

from specified external devices and cannot effectively communicate.  However, if both networks 

decide on a common device (bridge) in which to conduct controlled communication exchanges, 

then a bridge between the two networks can be constructed using two way RF-DNA fingerprint 

authentication paths. This implies that the chosen bridge must be fingerprinted and as such, the 

RF-DNA credentials of at least one of the adjacent BiONet’s nodes must be emplaced in the 

bridges memory using the RF-DNA exchange algorithm described in Chapter V.   Conversely, a 

subset of the authorized bridge’s RF-DNA fingerprints must be emplaced in at least one of the 

adjacent network’s designated bridge’s memory for one-way authentication.  Such an expressive 

policy lends itself to support multi-organizational cyberspace mission sharing collaboration in 

SATCOM ecosystems by enabling a more secure bridging of logically trusted networks. 

Secondly, the discovery of statistically significant rf-splitting (suggesting RF origin 

dissimilarity), of an RF-Event’s characteristic (e.g. RF-Measurement of its frequency response) 

suggests that evidence of unauthorized attempts can be easily obtained by log inspections. This 

future research would answer the question: 



www.manaraa.com

 

184 

 

FRQ:  Can log file screening of fixed station RF transmissions apply RF 

fingerprinting to augment Cyberspace forensics?  

Specifically, this research would emphasize how the bridging of wireless authentication 

schemes between disparate (independent networks) boundaries can be augmented using RF 

fingerprinting techniques.  Moreover, a cost benefit analysis can be conducted to provide insight 

to suggest best practices for when to conduct initial screening of existing logical-only 

authentication log files when infection is suspected.  An in depth study can determine the 

likelihood of infection of rf-splitting discovery and the associated to a known occurrence of 

abnormal network behavior (network-disease).  While current mitigation against network threats 

employ logical or bit-level authentication mechanisms, RF fingerprinting offer the opportunity to 

consider the physical attributes of distinct RF transmission sources.  In an RF-DNA relaying bridge 

configuration, an electronic device may provide more secure interconnections between trusted 

network entities.  An ability to track a chain of trust throughout the wide-area transport of an RF 

transmission’s origin to its final destination for authentication would be useful to Cyber 

professionals and network security experts.  Currently, bridging between disparate network 

boundaries employs conventional logical-only authentication mechanisms, which are vulnerable 

to SDR attacks.  Therefore, researching methods to improve the next generation of infrastructure 

scale network bridges using RF fingerprinting could make a significant contribution in 

authentication scheme enhancement for the future of cybersecurity.  Additionally, future research 

could focus on transmission circuit standardization of components.  It could examine the question: 

FRQ3:  Can fixed-station circuit design and command transmission standardization 

improve network defense and maintenance procedures?  
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This research should focus on the standardization of fixed ground station transmission 

circuits.  This path would further extend the capability accuracy in verification of RF fingerprint 

extractions from a known ground station circuits.    Key areas to study include the generation of a 

database of transceiver fingerprints under various environmental conditions.   A database lends 

itself to RF-DNA ontology development, transceiver benchmarking and profiling.  Database 

analysis may contribute to better understanding of the effects of environmental factors such as 

temperature on RF-DNA fingerprints. An immediate impact could be realized from an 

understanding of changing a major circuit component and determining if a significant change 

exists in a known fingerprint. Another research effort may discover a process to incorporate 

concepts of naturalization, death-certificates and similar credentials using RF-DNA mechanisms.  

The factorial design of experiments focused pathway should include the process of fingerprinting 

known transceivers using CubeSat in their native operational ecosystems to compare and contrast 

structural or locality effects that may provide major circuit variations.  Finally, a refinement of the 

circuit’s design would be a logical next step towards the advanced study of EMI effects on policy-

based RF-DNA marker exchanges. Here an exchange indicates that an authentication receiver has 

previously collected RF-DNA from the same source that it is authorized to transmit to.   

Likewise, the transmission source has previously collected RF-DNA from the transmitting 

authentication device in the reverse path direction.  When policy specifies such an exchange of 

information, the use of RF-DNA exchanges are implied.  This does not mean that RF-DNA results 

that are collected from a specific receiver is simply transferred to some arbitrary secondary 

receiver.  In preliminary trials, such erroneous misplacement of RF-DNA resulted in a loss ~10% 

classification accuracy. 
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ANNEX A: Towards an RF-DNA Marker Exchange Algorithm 

A.1 Overview 

This annex provides insight towards an RF-DNA Marker Exchange Algorithm for 
expressive biologically inspired network (BiONet) configuration policy.  The algorithm takes 
in a set of distinct RF-DNA fingerprints previously collected for a multiple discriminate 
analysis maximum likelihood (MDA/ML) classification model 𝒊𝒊 as its input.  A collection of 
trusted point-to-point (P2P) link authenticators are produced as the output.  For each 
authenticator, there exists at least one emplaced RF-DNA fingerprint credential of a trusted 
waveform source’s (device) origin.  Such emplacement enables self-evident authentication of a 
received waveform’s origin to prevent unauthorized link crossings into a bit-level decision-
support boundary.  A physical-layer authentication mechanism employed by an authenticator 
improves the confidentiality of link origin transactions, eliminates anonymous boundary 
crossings and improves spacecraft availability for non-offending entities.  Policy 
expressiveness allows for discrimination of waveform states generated by authorized devices, 
their users and associated privilege levels by protecting the integrity of link access.  RF-DNA 
fingerprinting is employed to detect self-evident credentials of inherent physical features that 
are contained with a modulated waveform carrier. 

A.2 Introduction 

The basic social unit concept that describes inherent trust among family members are 
adapted to a BiONet configuration.  In such a unit, children learn to understand and discriminate 
the voices of their parents from other adults even when all adults that speak the same logical 
message.  Children are believed to possess an inherent level of trust of their parents and during 
transactions of life experiences these children ultimately possess an inborn level of trust for 
their parents and siblings that they would not otherwise have in a reputation-based scheme when 
dealing with strangers.  When exchanges go awry between parent and child, a child is more 
likely to forgive a parent over a foreign adult.  Although the genetics of children may not be the 
sole contribution towards forgiveness, it is generally known that children nurtured by natural 
parents tend to trust and forgive those adults more often.  Inspired by such occurrences an 
adapted forgiveness factor 𝚽𝚽 for trust determination in a networking community is introduced.  

Extending the biological nature of trust in a close community, this article presents an 
algorithm that produces a set of authenticators to control access into the network C2 boundary 
and eliminate anonymous (foreign) or unauthorized access to community resources.  
Eliminating unauthorized access is an acceptable risk for the purpose of maintaining link 
availability during outsider or more dangerously an insider conman attack.  The fact that a user 
or device’s interactions may be tracked makes this a feasible mitigation strategy for continued 
research.  This article takes a concepts approach to algorithm development.  The definitions are 
first explored to familiarize the reader with the purpose of a waveform carrier state.  After the 
definitions brief examples are presented followed by informal proofs.  The article concludes 
with a discussion of future research recommendations and physically-determined waveform 
state network applications.   
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A depiction of a biologically inspired electronic network (BiONet) using RF-
Biomarkers to augment logical credential authentication claims appears in Figure 32.  A 
network of four ground stations (R1, R2, R3 and R4] and four satellites [S1, S2, S3 and S4] are 
interconnected across Net1 (crosslink) Net2/3 (uplink/downlink) and Net4 (wired) 
communication links.  As a BiONet, each device has been configured according to network 
policy such that a transmission source’s RF-DNA of authorized command transmission 
fingerprints have been previously collected by a policy specified authentication receiver.  
During normal operation, the authenticating device extracts new RF fingerprints from incoming 
transmissions and conducts a diagnostic test on the origin similarity of the new RF-Event to its 
locally known RF-Event benchmark template. A diagnostic result of benign occurs when the 
new RF fingerprint meets acceptance levels of similarity.  However an infectious result occurs 
when the RF origin similarity fails to meet benchmark similarity acceptance levels of the trusted 
RF origin source. 

 

 

Figure 32. Electronic network access controls using trusted RF-DNA exchanges. 
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A.3 Methodology 

Figure 33 is presented to provide a visualization of RF fingerprinting and policy 
development for effective emplacement in electronic authentication receivers.  Policy 𝑝𝑝 directs 
the collection of RF fingerprints from trusted devices and is provided as an input to the 
collections process as depicted in Figure 33a. The desired flow of information from 
transmission source (𝑟𝑟) to authentication destination (𝑑𝑑) is specified prior to RF fingerprint 
collection if necessary.  After policy requirements are specified, the set of trusted devices are 
configured in authorized transmission states and their RF-DNA is extracted using pre-specified 
RF-Measurements and a designated authentication device which receives the RF transmissions 
as depicted in (Figure 33b).  In order to detect an authorized RF fingerprint and make a 
comparison, reference fingerprints are simply preloaded or emplaced into every node as 
described by Rasmussen et. al in [25].   Following benchmark training, subsets of the extracted 
RF fingerprint samples are emplaced as physical RF attribute credentials (Figure 33c) into the 
physical local memory of the designated authentication receiver device 𝑶𝑶 as previously defined 
in the policy specification of the desired flow over the 𝒘𝒘𝑶𝑶 communication path.  In summary, 
a policy definition has previously determined the desired exchange of information between s 
and d for communication.  To augment the origin integrity of the s d defined by p, the RF-
DNA of s is collected by d for 1-to-1 verification in a simplex network configuration.  When 
policy specifies full duplex communication between s and d, the set of RF-DNA collections are 
said to be exchanged between specified communication pairs. 

   

Figure 33.  Policy to Extract and Emplace RF-DNA Fingerprints 

 
Figure 34 depicts a graph G that describes bio-pairing paths.  In Figure 34a nodes 

(1,2,3…n) are depicted as possible network transceivers; however there are no specified 
communication paths although the dashed lines may indicate desirable information flow.  In 
Figure 34b node1 and node4 have two distinct path policy specifications.  The first path policy, 
𝒑𝒑𝟏𝟏{𝑛𝑛𝑀𝑀𝑑𝑑𝑒𝑒4,𝑛𝑛𝑀𝑀𝑑𝑑𝑒𝑒1} indicates that some waveform state from 𝒘𝒘 = 𝑛𝑛𝑀𝑀𝑑𝑑𝑒𝑒1 to 𝑶𝑶 = 𝑛𝑛𝑀𝑀𝑑𝑑𝑒𝑒4 exists 
for authorized communication.   
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Likewise, the second link (𝑑𝑑4𝑟𝑟1)  specified by policy 𝒑𝒑𝟐𝟐 indicates that some 
waveform state 𝒘𝒘𝒘𝒘 from 𝒘𝒘 = 𝑛𝑛𝑀𝑀𝑑𝑑𝑒𝑒4 to 𝑶𝑶 = 𝑛𝑛𝑀𝑀𝑑𝑑𝑒𝑒1 exists. Figure 34b indicates that information 
exchange is one-way and the distinct paths exist between exactly one source and one destination 
node for the pairing.  In Figure 34c, however we notice that each source device has a distinct 
path indication where the destination node is the same for all sources.  In this case, node 𝑶𝑶 
functions as a typical hub receiver in a conventional hub-spoke topology network.  Here, 𝑶𝑶 is 
an authorized authenticator for each transmission source’s generated waveforms.  In Figure 
34d the credential pairing 𝒑𝒑{𝒘𝒘,𝑑𝑑1,𝑑𝑑2,𝑑𝑑3 …𝑑𝑑𝑛𝑛}  is given where node1 is functioning as the sole 
transmission source.  This type of communication can be described for each distinct link or 
more traditionally as a broadcast network where each 𝑶𝑶𝑩𝑩 functions as an authenticator of the 
broadcast waveforms received from origin 𝒘𝒘.  In each policy-based bio-pair each destination 
device has the additional capability that it can authenticate the received transmission of its 
sourced partner.  In these examples of Figure 34, 𝑶𝑶𝑩𝑩 possesses self-evident RF-DNA fingerprint 
markers of 𝒘𝒘 and can authenticate specified waveforms origins received using such credentials. 
For all cases, 𝒘𝒘 ≠ 𝑶𝑶.  

   

Figure 34.   Directed Waveform Origin Bio-Paths 

• A.3.1  Model Definitions. 
By exchanging validated RF-DNA credentials between specified device members, a 

networked electronic community is capable of recognizing authentic transactions due to an 
inborn level of trust (self-evident) that is contained within an authenticator’s local memory.  
During normal operations, 𝑑𝑑 listens for an incoming authorized state of waveform 𝑤𝑤  from 𝒘𝒘 
 that is transmitted over a wireless uplink 𝒍𝒍 using a standardized modulation protocol. 
Conventionally, after detecting an authorized 𝑤𝑤, the receiving device 𝑑𝑑 proceeds to demodulate 
the carrier and decode a bit-level message 𝑚𝑚 for network-layer authentication.  The physical 
origin integrity of 𝑤𝑤 is not considered in the conventional approach.   
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• A.3.2 Definition-1:  Waveform Properties 
Using AFIT’s RF-DNA fingerprinting methodology [52] and adapting Dr. Cobb’s 

concept of an intrinsic physical layer [4] approach to circuit authentication, four desirable 
properties of a waveform carrier emerge.  The first property suggests that the analog waveform 
which carries the elusive RF-DNA fingerprint marker must be naturally generated by a distinct 
origin source.  A waveform could originate from a mobile device, stand-alone radio transceiver 
or a more complex transmission circuit containing multiple subcomponents.  The source 
influences the RF-DNA fingerprint result and must remain distinct from all other sources during 
natural waveform event generation as the initial Property-1.  Using a transceiver may also 
function as a system component in a complex system that employs a TNC, PC, software defined 
radio (SDR) power amplifiers and the like for ground stations.  Previous research has shown 
that changing out a critical component a circuit’s transmitter or receiver may adversely affect 
the reproduction of and detectability of a statistically significant match for RF-DNA 
fingerprints.  These findings highly imply that circuits remain consistent throughout authorized 
waveform event generations in order to meet policy objectives.  

   
Table 29:  Desirable Properties of Unique Waveform Origin Integrity Features  

Desired Description 

Property-1: 
An original waveform event must be natural (i.e. analog or continuous) in its 
immediate existence in time and space rather than existing as a derived logical (e.g. 
binary or digital) interpretation.  

Property-2: 
 

Specified feature attributes of the event must be inherent among similar waveform 
emission types (e.g. Type III frequency generating transmitters [77]. 

Property-3: 
 

The extractable features of waveform generating circuits must be repeatable and 
evident from the occurrence of the natural event stimuli. 

Property-4: 
 

A sample obtained from the waveform event must provide evidence that its features are 
statistically significant to support known and consistent event feature measurements. 

 
As a second desirable property, the physical attributes of the original waveform must be 

inherent among all similar emissions (e.g. emissions made in the ultra-high frequency range).  
A third desirable property (Property-3) calls for the repeatability of a generated waveform event 
such that a statistical RF-DNA fingerprint match can be made during waveform marker 
extractions.  Property-4’s desired waveform properties to contain some agreed up unit of 
measuring the event such that the manner of measurement is quantifiable and sufficient to 
describe the event occurrence.  An extracted fingerprint sample must be usable as credentialing 
evidence if a consistent and statistically unique result exists. Property-4 is desired to provide 
the evidence of a statistical comparison.  A summary of these desirable properties are provided 
in Table 13 below [4] [3]. 
• A.3.3 Definition-2: Waveform State 

The term state is used to refer to the circuit configurations of a man-made waveform 
generator assumes to reproduce such an event.  The authorized waveform states that can be 
generated by trusted circuit origins are provided in Table 4.  On the left, the level indicates the 
generalization for use that a particular waveform could be applied towards device 
discrimination.   
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A Level-1 waveform is a circuit that generates a waveform and has as its fingerprinted 
ROI as a standardized marker such as a preamble, midamble or postamble region of the 
standardized modulation scheme.  Using standardized ROIs provide consistent discriminability 
since normal communications require the specified modulation scheme for effective 
communication.  Integrating a Level-1 ROI has a low level of complexity for network 
configurations; however the storage size of a constant region may be too costly for receiver 
storage and real-time processing limitations.  As the level increases for an authorized waveform 
generation state, the complexity generally increases while the storage requirements generally 
decrease.  At the bottom of Table 30 we see that Level-5 waveform states have a combination 
of customized ROIs that extract standard regions and non-standard portions of waveform 
regions as they are generated.  These multi-custom ROIs have a high level of complexity, but 
may yield the smallest storage size requirement for RF-DNA credential verification at the 
receiving device.    

 
Table 30.  Authorized Waveform States for RF-DNA 

Level 
Auth 

States 
ROI Example Complexity Storage Size 

0 𝑤𝑤0 Baseband SOI Full Waveform Env Replay Low High 
1 𝑤𝑤1 Standard Preamble Low High 
2 𝑤𝑤2 Custom Standard Varied Start/Stop of Preamble Low Medium 
3 𝑤𝑤3 Non-Standard DeviceID Field Medium Medium 
4 𝑤𝑤4 Custom Non-Standard Varied Field Sampling Medium Low 
⋮ ⋮     
s 𝑤𝑤𝑠𝑠 Multi-Combination Custom Preamble  &  Custom Field High Low 

 

• A.3.4 Definition-3:  Waveform Classifications. 
The possible classification determinations adapted from AFIT’s RF-DNA 

fingerprinting process can be made by 𝑑𝑑 upon detection of 𝑤𝑤 as follows; 1.) Identity Class: 
Does message 𝑚𝑚 contain RF-DNA from 𝑤𝑤𝑠𝑠 as claimed by 𝒘𝒘. 2.) Membership Class: If 𝑤𝑤𝑠𝑠’s 
RF-DNA fingerprint matches a member 𝑟𝑟 of 𝑀𝑀. 3.) Unknown Class: If neither identity nor 
membership of 𝒘𝒘 can be determined.  These waveform classification types used for origin 
authentication are summarized in Table 31.  Type I classifications are generally desired. 

 
Table 31.  Waveform Classification Types 

Classification Type Name 
I Identity 
II Membership 
III Unknown 

 

• A.3.5 Defintion-3:  Region of Interest  Index Markers. 
The use of an ROI indexing marker (𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊) is introduced to send either in-band or out-

of-band information that may include the ROI’s specified start and stop points for fingerprint 
extraction or a key sequence number for synchronization.  Prior to network operations, it is 
assumed that RF-DNA fingerprints have been collected for model 𝒊𝒊.   



www.manaraa.com

 

192 

 

In 𝒊𝒊, all authorized waveform states have been fingerprinted for each distinct 
combination of device, user and privilege level combinations.  The collected fingerprint results 
are then considered for RF-DNA exchanges which support the communication path 
specifications of requirements of policy 𝒑𝒑.  After receipt of 𝒑𝒑, a network graph 𝑳𝑳 is configured 
to support the desired outcome for authenticated information flow using physically-determined 
RF-DNA fingerprint markers as waveform origin credentials.  That is to say, for each 
authenticator device designated as a path receiver 𝑶𝑶𝑩𝑩; the physical memory of  𝑶𝑶𝑩𝑩 is modified 
such that there exists sufficient RF-DNA fingerprint credentials.  Such preplaced credentials, 
when compared to extracted RF-DNA fingerprint samples received from source 𝒘𝒘, yields a 
statistically significant waveform origin integrity classification result.  

Any standardized waveform carrier that contains a baseband equivalent signal 𝑪𝑪 (e.g. 
000111) may be emitted along an ultra-high frequency (UHF) communications path as a 
possible waveform 𝑊𝑊 state generated by some circuit.  The acceptance or rejection of 𝑪𝑪 is a 
function of 𝒑𝒑, such that only authorized states (𝑤𝑤𝑠𝑠) are considered for comparison and 
acceptance by Rx. In this contrivance, artificial RF-DNA transfusions are conducted such that 
𝑶𝑶 receives the RF-DNA of a trusted donor source (circuit).  If such a donation is acceptable 
(RF-Biomarker levels match) for 𝑶𝑶, then future exposure of the donated samples are recognized 
by 𝑶𝑶 as if it naturally existed. This novice concept enables the transfusion of said physically-
determined RF-DNA fingerprints collected previously from trusted circuits and subsequently 
emplaced into the physical memory of a designated Rx authenticator device 𝑶𝑶, which is 
assumed to be secure in as defined by policy according to [57]. 
• A.3.6 Definition-4:  BiONet. 

A Biologically inspired network (BiONet) is a collection of electronic entities which 
share one or more self-evident origin integrity credentials learned from an authorized 
transmission source(s).  Artificial transfusions of RF-DNA fingerprint credentials are 
exchanged between members to form a coherent network of communication devices according 
to 𝒑𝒑.  The network’s boundaries are controlled by designated Rx authenticators of transmission 
circuit origins.  The term self-evident is defined in section 5.3.11 in more detail. 
• A.3.7 Definition-5:  Self-Evident Markers. 

A self-evident marker is defined as an event characteristic that presents a feature that 
describes the event’s occurrence without a need for additional interpretation.  A receiver 𝑶𝑶 owns 
self-evident credentials for identity 𝒘𝒘 when all desirable properties of Table 13 are met and a 
statistical RF-DNA fingerprint credential from a trusted waveform state 𝒘𝒘𝒘𝒘 are found within 
the memory resources of 𝑶𝑶.  This implies that RF-DNA fingerprints are emplaced before 
authorized communication occurs between devices.  A specified policy 𝒑𝒑 between 
(𝒘𝒘 𝑶𝑶) must exist for link 𝒍𝒍 to support a claim of 𝒘𝒘’s apparent waveform classification of Table 
31. 
• A.3.8 Message Credential Authentication Schemes 

A.3.8.1 Message Credential Identification  
A typical message (𝑚𝑚) contains invariant fields used to logically identify network 

devices in a specified network.  Let, 𝐼𝐼𝑒𝑒𝑘𝑘 represent a sequence of bits {0110…} represent the 
bit level identification field used to encode the kth credential to authenticate message  𝑚𝑚 as 

𝑐𝑐𝑘𝑘𝐵𝐵𝐻𝐻𝑇𝑇 = {0110 … } =  𝐼𝐼𝑒𝑒𝑘𝑘                                                                         (13) 
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Consider Simmons’s well-known A-Code authentication scheme involving three 
electronic circuits (participants) a transmitter (𝑇𝑇𝑅𝑅𝑠𝑠), a designated receiver (𝑅𝑅𝑅𝑅𝑑𝑑) authenticator 
and some arbitrary opponent 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 [82].  Circuit 𝑇𝑇𝑅𝑅𝑠𝑠communicates information in accordance 
with some trusted policy-based pairing 𝑝𝑝, which specifies a set of repeatable binary bit 
sequences. Such authorization of circuit transmission states enables the generation of repeatable 
and observable RF-Events for receiver 𝑅𝑅𝑅𝑅𝑑𝑑’s authentication.  In order to deceive authenticator 
𝑅𝑅𝑅𝑅𝑑𝑑, 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 tampers with or impersonates either the logical or physical components of the bits, 
which are included in the RF-Event containing 𝑚𝑚 and emitted by 𝑇𝑇𝑅𝑅𝑠𝑠. Conventionally, such an 
impersonation attack of logical attributes, as observed by 𝑅𝑅𝑅𝑅𝑑𝑑 (at the bit-level) may appear as 
an authentic message 𝑚𝑚𝑗𝑗 ∈ 𝑀𝑀 at the bit-level for a given decoded RF-Event sequence.  
Unfortunately, the modifications of the physical attributes may remain undetectable if 𝑑𝑑 filters 
such information as useless in its determination of a binary '0' or '1' during decoding. 

Denote the set of all possible circuit source states authorized in 0 by {𝑊𝑊}. A front-end 
transmission device 𝑇𝑇𝑅𝑅𝑠𝑠  may modulate a message 𝑚𝑚 toward 𝑅𝑅𝑅𝑅𝑑𝑑 along 𝑝𝑝. When 𝑇𝑇𝑅𝑅𝑠𝑠  modulates 
a specified 𝑚𝑚𝑖𝑖𝑗𝑗 onto its RF circuit carrier the resulting RF-Event generation is visualized as an 
analog waveform ′𝒘𝒘𝒊𝒊′.   Adapting Bishop’s definition, a security policy (𝑝𝑝𝑖𝑖) is a statement that 
partitions 𝑊𝑊 into mutually exclusive authorized (i.e. secure) or unauthorized (i.e. non-secure) 
circuit source states [62].   Where 𝑡𝑡 is the time in which the RF-Event sampling from the rth 
region of interest occurs during message receipt and demodulation of 𝑚𝑚.  A hierarchical pairing 
of credentials of 𝑚𝑚𝑖𝑖𝑗𝑗 carried within 𝒘𝒘𝒘𝒘 may provide layered support to the multi-factor 
authentication model (e.g. OSI or DOD model) shown in Figure 22. 

A.3.8.2 Policy Specification 
Let network policy 𝑝𝑝𝑖𝑖 specify the nth pairing of the kth logical and physical credentials 

of the RF-Event containing 𝑚𝑚.  Such a policy specifies a circuit’s front-end device 𝑇𝑇𝑅𝑅𝑠𝑠 as its 
circuit’s encoder where the transmission of 𝑚𝑚 can be decoded by 𝑅𝑅𝑅𝑅𝑑𝑑for validating the 
authenticity of 𝑚𝑚.  For each logical credential 𝑐𝑐𝑘𝑘𝐵𝐵𝐻𝐻𝑇𝑇 used for message authentication [82] there 
is an associated kth physical 𝑐𝑐𝑘𝑘PHYcredential to support the origin integrity claims of 𝒘𝒘𝒘𝒘 using 
RF-Biomarkers.  More generally, let the set {𝑃𝑃} of network security policies specify a source 
to destination (𝑟𝑟𝑑𝑑) pairing of logical and physical credentials of all messages  {𝑀𝑀} for a 
hierarchical network model from is 

𝑝𝑝𝑖𝑖�𝑚𝑚𝑖𝑖𝑗𝑗�𝑙𝑙 = {𝑐𝑐𝑘𝑘𝐵𝐵𝐻𝐻𝑇𝑇 , 𝑐𝑐𝑘𝑘𝑃𝑃𝐻𝐻𝑃𝑃}𝑙𝑙 .                                                                         (14) 

Where 𝑝𝑝𝑖𝑖 is the pth security policy for the 𝒍𝒍th layer of the network model in which the 
authenticity of the kth logical credential for the cth commands authentication scheme’s 
utilization.  On the left, 𝑝𝑝 defines a trusted waveform state (T1) to authenticate the origin 
integrity of an RF-Event. On the right, a network-layer authentication scheme employs a bit-
level authentication scheme to validate the binary message content. When combined, the 
physical layer mechanism can enhance the integrity of a message 𝑚𝑚 as well as confidentiality. 
An assumption that the signal to noise ratio (SNR) is sufficient for RF-DNA mechanism 
detection and employment for acceptable (True or False) performance. The green bar on the 
left indicates the start point of the sampling ROI, whereas the red bar indicates the sampling 
ROI stop point. When the start and stop points match a standardized modulation scheme, are 
called termed preamble, midamble or postamble regions.  
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The combination of the start and stop sampling locations of an ROI are referred to as 
the 𝑅𝑅𝑀𝑀𝑘𝑘𝑟𝑟. The 𝑅𝑅𝑀𝑀𝑘𝑘𝑟𝑟 key provides the start and stop points for RF-Event sampling. 

 

Figure 35.  Multifactor Authentication Using Pathological Evidence 

The Logical Network Configuration of a trusted source (𝑟𝑟𝑖𝑖 = 𝑇𝑇𝑅𝑅𝐴𝐴) transmitting a 
message to 𝑑𝑑 in a wireless RF network environment.  Additionally, an untrusted source (𝑟𝑟𝑎𝑎 =
𝑇𝑇𝑅𝑅𝐵𝐵) is also capable of transmitting a message 𝑚𝑚 to 𝑑𝑑 that is logically equivalent to the 
modulated bits transmitted by 𝑟𝑟1.  Upon receipt of an RF-Event (𝑤𝑤𝑠𝑠) authenticator 𝑑𝑑 = 𝑅𝑅𝑅𝑅𝐶𝐶  
must decide if the origin of the claimed identity associated with m is authentic or not.  If 𝑑𝑑 
decides based on logical credential authentication alone, the origin integrity is uncertain.  If the 
pathology of RF-Biomarker levels is acceptable for a claimed message and the logical 
credential is valid, then 𝑑𝑑 authenticates the origin integrity of 𝑟𝑟𝑖𝑖 for uplink access.  The pre-
authorization, generation and collection of RF fingerprints allows for future pairings of 
credential authentication schemes. Adapting Bishop’s definition, a security policy (𝑝𝑝𝑖𝑖) is a 
statement that partitions all possible circuit generating RF transmission states into a set of 
authorized (i.e. secure) and unauthorized (i.e. non-secure) states [62]. Authorized waveform 
transmission events inherently carry the trusted RF-DNA fingerprint markers and are generated 
by 𝑟𝑟 and transmitted to 𝑑𝑑 for origin integrity validation. When 𝑝𝑝𝑖𝑖 specifies a set of authorized 
circuit transmission states, the resulting secure transmitted waveform events are distinguishable 
from all other possible events. The set of secure circuit generating RF-Event states are 

𝒘𝒘𝒘𝒘(𝑡𝑡) ⊆ 𝑤𝑤𝑖𝑖  (𝑡𝑡)  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑅𝑅: 1,2, … 𝑟𝑟, (𝑟𝑟 + 1), (𝑟𝑟 + 2), … (𝑟𝑟 + 𝑅𝑅), 𝑅𝑅.                                          (15) 

A.3.8.3 RF-Event Generation from Trusted Origins 
A simple analogue FM circuit modulates a baseband information signal (𝒘𝒘𝒊𝒊) onto a fixed 

sinusoidal carrier wave (𝒄𝒄𝑶𝑶) and transmits a modulated waveforms 𝑤𝑤𝑖𝑖 as output. A subset of 
authorized baseband signals are transmitted through a fixed state modulation circuit, producing 
a trusted complex waveform state as output (𝑤𝑤𝑠𝑠). Where 𝒘𝒘𝒘𝒘 is a repeatable modulated 
waveform state generated by a fixed transmission circuit 𝑐𝑐(𝑡𝑡).  
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Let 𝑟𝑟𝑠𝑠(𝑡𝑡) represent the trusted subset of input baseband signals into a sinusoidal FM 
modulator as described by Stewart et al [83]. A single baseband input analog signal with an 
amplitude 𝑇𝑇𝑖𝑖 and a frequency𝑓𝑓𝑖𝑖 is  

𝑟𝑟𝑖𝑖  (𝑡𝑡) = 𝑇𝑇𝑖𝑖 𝑐𝑐𝑀𝑀𝑟𝑟(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡) = 𝑇𝑇𝑖𝑖 𝑐𝑐𝑀𝑀𝑟𝑟(𝜔𝜔𝑖𝑖𝑡𝑡)                                                               (16) 

where  𝜔𝜔𝑖𝑖 = 2𝜋𝜋𝑓𝑓𝑖𝑖. When there is no present input baseband signal, the FM modulated 
carrier output of a single component with amplitude 𝑇𝑇0 and a frequency𝑓𝑓0 takes the form  

𝑐𝑐 (𝑡𝑡) = 𝑇𝑇0 𝑐𝑐𝑀𝑀𝑟𝑟�2𝜋𝜋𝑓𝑓0𝑡𝑡 + 𝜃𝜃�(𝑡𝑡) �.                                                                      (17) 

Integrating the product of the input baseband signal and a modulation constant 𝑘𝑘0 into 
an FM modulation transmitter, the instantaneous phase (IP) of the generated FM waveform 
output is determined by: 

𝜃𝜃�(𝑡𝑡) = 2𝜋𝜋𝐾𝐾𝑓𝑓𝑃𝑃 ∗� 𝑟𝑟𝑖𝑖(𝑡𝑡)
𝑡𝑡

−∞
                                                                      (18) 

Where 𝐾𝐾 is the gain. As the baseband signal arrives at the circuit for integration, a 
frequency deviation occurs as sinusoidal terms on either side of the carrier frequency. This 
deviation is known as the modulation index (𝐻𝐻).  As a present baseband signal modulates onto 
𝑐𝑐(𝑡𝑡) through a fixed FM circuit, the phase (effective frequency) of the carrier waveform 
modifies in response to the amplitude variations of 𝑟𝑟𝑖𝑖 (𝑡𝑡) according to 𝐻𝐻. A repeatable FM 
modulated waveform signal event 𝑤𝑤𝑖𝑖, using the carrier’s amplitude and frequency given by 𝑇𝑇𝑐𝑐 
and 𝑓𝑓𝑐𝑐 becomes;  

𝑤𝑤𝑖𝑖  (𝑡𝑡) = 𝑇𝑇𝑐𝑐 𝑐𝑐𝑀𝑀𝑟𝑟 �𝜔𝜔𝑐𝑐𝑡𝑡 +  𝐻𝐻𝑓𝑓𝑃𝑃  𝑟𝑟𝑅𝑅𝑛𝑛(𝜔𝜔𝑖𝑖𝑡𝑡)� .                                                           (19) 

    Given 𝐾𝐾 and 𝑓𝑓𝑐𝑐 the instantaneous frequency (𝐼𝐼𝑓𝑓) is obtained with; 

𝐼𝐼𝑓𝑓  𝑤𝑤𝑖𝑖
= 𝑓𝑓𝑐𝑐 +  𝐾𝐾𝑓𝑓𝑃𝑃𝑟𝑟𝑖𝑖(𝑡𝑡) 𝐻𝐻𝑧𝑧.                                                                         (20) 

A.3.8.4 Statistical RF-Biomarker Generation 
A component RF-biomarker has three major parts, its distribution of RF-measurements 

collected during profiling, a histogram for graphic visualization and a confidence interval of all 
acceptable RF measurement values collected (observed) from 𝑇𝑇𝑅𝑅𝑠𝑠.  For each RF-biomarker, a 
statistical measurement of the full-wave’s real and imaginary parts to include any sub-region’s 
real and imaginary parts.  This vector of RF-measurements comprises values of independent 
receiver observations of specified RF-Events.   

The stored signature of an RF-biomarker contains a distribution of trained observations 
of 𝒘𝒘𝒘𝒘. The probability density function pdf estimates occur using the distribution of each 𝑇𝑇𝑅𝑅𝑠𝑠 
device.  An arbitrary RF measurement ( ⋆𝑃𝑃)  indicates the 𝑚𝑚th measurement occurrence across 
a fixed time/space of received RF-Events.  While, not all RF-biomarkers from an RF-DNA 
fingerprint may be necessary for accurate comparison, a single indicator alone may not be 
sufficient for optimal classification of fixed circuit-based encoding rules from [39] [42].   
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To support the goals of 𝑝𝑝𝑖𝑖, a decision rule determines the point of partition for 
acceptance levels for a given RF-biomarker.  All RF-Biomarkers that fall short of the decision-
rule receive a classification of infectious, while all acceptable ones are benign.  When a 
credential claim is benign, the logical credential (matched bits) claim is recommended as 
originating from an authentic source, however an infectious (deficient levels of benchmark 
similarity exist in the claimed RF-event) diagnosis indicates a fake credential and recommends 
a high level of risk for accepting the contents as original. 

For every repeatable RF-Event of interest generated from (15), the capture of  
instantaneous response features retains the waveform’s unique I/Q values. The 𝐼𝐼𝑀𝑀𝑘𝑘𝑟𝑟’s 
specification of sampling for ROI start and stop points assist in receiver identification of 𝑤𝑤𝑠𝑠.  
For n-samples, a division of nth ROI sample into 𝑒𝑒𝜌𝜌 equal length contiguous sub-regions plus 
itself occurs to yield (𝑒𝑒𝜌𝜌 + 1) total regions for each device’s fingerprint generation.  Four 
statistical RF measurements occur for each characteristic of interest.  The features include the 
variance (𝜎𝜎2), standard deviation (𝜎𝜎), skewness (𝛾𝛾) and kurtosis (𝜅𝜅). The first central moment 
(arithmetic mean) provides the expected value or mean (µ1) of a distribution or average center 
value. The second central moment of a distribution is the variance and gives a measure of how 
the individual 𝑛𝑛 samples of a population 𝑋𝑋 distributes around the mean 𝜇𝜇1. The standard 
deviation 𝜎𝜎 is the positive square root of 𝜎𝜎2. The 𝛾𝛾 statistic provides a measure of symmetrical 
similarity of the pdf as the third central moment, while 𝜅𝜅 (fourth central moment) measures the 
peak or flatness of a probability distribution function (pdf) [4] [14] [44]. Assuming a Gaussian 
pdf, let µ𝑖𝑖 denote the 𝑅𝑅th central moment of a random variable 𝑋𝑋 as the vector {𝑅𝑅(𝑛𝑛)}, where 
each central moment’s statistic of the pdf can be found by: 

𝜇𝜇2 = 𝜎𝜎2 =
1
𝑒𝑒𝑇𝑇

�(�̅�𝑅𝑐𝑐(𝑛𝑛) − 𝜇𝜇1)2 ,                                                                   (21)
𝑇𝑇𝑥𝑥

𝑛𝑛=1

 

𝜇𝜇3 = 𝛾𝛾 =
1

𝑒𝑒𝑇𝑇𝜎𝜎3
�(�̅�𝑅𝑐𝑐(𝑛𝑛) − 𝜇𝜇1)3 =

𝜇𝜇3
(𝜇𝜇2)3 2�

 ,                                                      (22)
𝑇𝑇𝑥𝑥

𝑛𝑛=1

 

and 

𝜇𝜇4 = 𝜅𝜅 =
1

𝑒𝑒𝑇𝑇𝜎𝜎4
�(�̅�𝑅𝑐𝑐(𝑛𝑛) − 𝜇𝜇1)4 =

𝜇𝜇4
𝜇𝜇22

 ,                                                          (23)
𝑇𝑇𝑥𝑥

𝑛𝑛=1

 

where 𝑅𝑅 = 1,2,3, … 𝑒𝑒𝜌𝜌 + 1.  
 
 
The concatenation of central moment statistics form a regional distinct native attribute 

marker as a vector for each sub-region from the RF-Event’s localized ROI as: 
 

𝐹𝐹𝜌𝜌𝑖𝑖 = �

𝜎𝜎𝑅𝑅𝑖𝑖
𝜎𝜎2𝑅𝑅𝑖𝑖
𝛾𝛾𝑅𝑅𝑖𝑖
𝜅𝜅𝑅𝑅𝑖𝑖

�  .                                                                                        (24) 
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A composite characteristic vector is formed from the Further concatenation of the RF-
DNA marker vectors obtained from (24) forms a composite characteristic vector of each 
selected feature’s characteristic response (i.e., 𝑇𝑇, 𝜃𝜃,𝑓𝑓) as: 

𝐹𝐹𝐶𝐶 = �𝐹𝐹𝑅𝑅1 ⋮ 𝐹𝐹𝑅𝑅2 ⋮ 𝐹𝐹𝑅𝑅3 …𝐹𝐹𝑅𝑅𝑇𝑇𝑅𝑅+1�1×4(𝑇𝑇𝑅𝑅+1)
.                                                  (25) 

After selecting the desired number of statistical response features, number of sub-
regions and the composite characteristic vectors from (25), a final statistical fingerprint vector 
construction becomes 

𝐹𝐹𝐶𝐶 = [𝐹𝐹𝑐𝑐1 ⋮ 𝐹𝐹𝑐𝑐2 ⋮ 𝐹𝐹𝑐𝑐3 … ⋮ 𝐹𝐹𝑐𝑐𝑏𝑏]1×4(𝑇𝑇𝑅𝑅+1)×3,                                                                 (26) 

where 𝑏𝑏=Total Number of component RF-Biomarker features contained in the 
composite fingerprint vector. 

In (26) above, the composite characteristic vector 𝑐𝑐1, 𝑐𝑐2 and 𝑐𝑐3 represent the selected 
amplitude, phase and frequency characteristics of the transmitter’s full (real and imaginary 
parts) times series power spectral density that may be used to visualize the RF-Event as a 
waveform.  In conventional waveform analysis of interoperable communication networks, the 
goal is to ensure that logical interpretations of transmissions receipts occur at the bit-level.  This 
method of analysis typically discards localized physical dissimilarities that may exist in device 
specific emissions in favor of a more global discrimination approach to distinguish between a 
binary '1' and '0' to support interoperability and standardization goals.  

Where, 𝑐𝑐𝑘𝑘BIN = n − bits of length L,  𝑟𝑟. 𝑡𝑡.  𝑛𝑛 = 0 𝑀𝑀𝑟𝑟 1 and 𝑐𝑐𝑘𝑘PHYis a 2-tuple vector of 
policy-based RF-measurements.  Using time series analysis of the RF-Event, 𝑅𝑅𝑅𝑅𝑑𝑑 observes the 
policy-based message authentication credentials �𝑐𝑐𝑘𝑘PHY� after receiving a claimed instance of 
𝑤𝑤𝑠𝑠 using ⋆𝑃𝑃 across ROI 𝑟𝑟 to support authenticity claims.   

𝑐𝑐𝑘𝑘𝑃𝑃𝐻𝐻𝑃𝑃
𝑦𝑦𝑖𝑖𝑉𝑉𝑙𝑙𝑑𝑑𝑠𝑠
�⎯⎯� �⃑�𝐷𝑃𝑃 .                                                                                    (27) 

The resulting vector from (27) represents the RF-Biomarkers contained within a 
received RF-Event 𝑤𝑤𝑠𝑠 as observed by 𝑅𝑅𝑅𝑅𝑑𝑑. Where 𝑟𝑟 = {1,2, … 𝑀𝑀} is the 𝑀𝑀th sub region of interest 
from 𝑤𝑤𝑠𝑠.  For each 𝑐𝑐𝑘𝑘BIN, we extract a complex valued RF-DNA fingerprint from a specified 
region of interest (ROI) designated by the rth region of a claimed RF-Event 𝒘𝒘𝒊𝒊.  The mth ⋆ 
measurement of r objectively computes the RF-DNA statistics.  Since we assume that each 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 
is physically distinct during the generation of 𝑤𝑤𝑠𝑠, we obtain trusted physical credentials �𝑐𝑐𝑘𝑘PHY� 
for a given 𝑐𝑐𝑘𝑘BIN, using RF-measurement  ⋆𝑃𝑃 to extract RF fingeprrints from 𝒘𝒘𝒘𝒘 as observable 
by 𝑅𝑅𝑅𝑅𝑑𝑑.   

Where ⋆𝑃𝑃 represents the mth “RF-measurement” of a sampled waveform’s 𝑤𝑤𝑠𝑠  𝒊𝒊th 
region of interest (ROI) over the time (𝑡𝑡) interval from 𝑎𝑎 to 𝑏𝑏.  Let 𝑎𝑎 and 𝑏𝑏 represent the start 
and stop time duration of  𝑟𝑟 as observed by 𝑅𝑅𝑅𝑅𝑑𝑑.  Notice, the  ⋆𝑃𝑃 measurement occurs prior to 
processing of the decoded bit-sequence of 𝒘𝒘𝒘𝒘, but may be conducted in parallel to reveal the 
contents of 𝑚𝑚 after demodulation using similar techniques.  This expression for 𝑑𝑑’s RF-
measurement of an incoming RF-event for 𝑤𝑤𝑖𝑖  is  
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𝑅𝑅𝑅𝑅𝑑𝑑[⋆𝑃𝑃 (𝑤𝑤𝑠𝑠)𝑃𝑃]𝑛𝑛
𝑦𝑦𝑖𝑖𝑉𝑉𝑙𝑙𝑑𝑑𝑠𝑠
�⎯⎯� [𝑐𝑐𝑘𝑘𝐵𝐵𝐻𝐻𝑇𝑇 , 𝑐𝑐𝑘𝑘𝑃𝑃𝐻𝐻𝑃𝑃] 𝑛𝑛.                                                                     (28) 

• A.3.9 Device Specific Encoding Rule Signature Development for Verification 
A.3.9.1 Device-based Encoding Rule 

Consider a circuit that is capable of transmitting two of three command messages to 
𝑅𝑅𝑅𝑅𝑑𝑑 .  Let 𝑟𝑟1 = the authorized source circuit state that generates a baseband message to represent 
command-1 (𝑐𝑐𝑘𝑘=1).  Using some fixed bit-sequence ID field, we select 𝑇𝑇𝑅𝑅𝑠𝑠 as the front-end 
circuit encoder for the authorized carrier source state to 𝑅𝑅𝑅𝑅𝑑𝑑.   In order to protect against attacks 
from 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃, 𝑤𝑤𝑠𝑠 is encoded using one and only one front end device as the primary circuit state 
encoding rule.  Let {𝐸𝐸} denote the set of all circuit encoding rules of 𝑚𝑚 where 𝑚𝑚 ⊆ 𝑀𝑀 is much 
greater than 𝑊𝑊.  A device-based fixed circuit source state encoding rule  𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 ∈ 𝐸𝐸  provides a 
1-to-1 mapping from 𝑊𝑊 to 𝑀𝑀.  The range of 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠(𝑊𝑊) generated by 𝑇𝑇𝑅𝑅𝑠𝑠 consists of a subset of 
𝑀𝑀 that possesses RF-DNA markings of its original source. Prior to transmission, policy 𝑝𝑝𝑖𝑖 
specifies the circuit encoding rule 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠, collection of RF measurements and storage of 
signatures into the memory of 𝑅𝑅𝑅𝑅𝑑𝑑.   Given 𝑝𝑝𝑖𝑖, 𝑤𝑤𝑠𝑠𝑖𝑖, 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 and 𝑅𝑅𝑅𝑅𝑑𝑑, we define a circuit source 
state’s RF encoding rule for trusted command messages as; 

𝑒𝑒𝑇𝑇𝑇𝑇𝑖𝑖(𝑤𝑤𝑠𝑠 ,𝑚𝑚𝑖𝑖𝑠𝑠) (𝑐𝑐𝑘𝑘)𝑖𝑖𝑠𝑠                                                                        (29) 

Where 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 is the sth transmission device used as the circuit encoding rule, 𝑤𝑤𝑠𝑠 is the 
device’s sth circuit transmission state.  The modulated message 𝑚𝑚𝑖𝑖𝑠𝑠 is the ith circuit source 
state encoding rule of the sth transmission device.  The resulting kth command contains the 
extractable RF fingerprint evidence of the mth message for verification support by the dth 
authenticator device 𝑅𝑅𝑅𝑅𝑑𝑑. Repeating (29) to generate RF-Events n-times enables device 
specific benchmarking of policy-based transmission events.  Such encoding using a specified 
device lends itself to more reliable learning of the physical RF characteristics associated with 
‘how’ 𝑇𝑇𝑅𝑅𝐴𝐴 emits transmissions as observable by 𝑅𝑅𝑅𝑅𝐶𝐶.  

A.3.9.2 Device-Specific Decoding Rule 
We now focus on defining a decoding procedure of RF-Events to reveal the logical and 

physical informational content of 𝑚𝑚′𝑟𝑟 claimed credentials by a specified authenticator device 
𝑅𝑅𝑅𝑅𝑑𝑑 .  In general 𝑅𝑅𝑅𝑅𝑑𝑑 observations of RF-DNA fingerprints from a specified transmitter are 
statistically independent from all other receivers 𝑅𝑅𝑅𝑅𝑖𝑖.  Upon receipt of a new RF-Event 𝑤𝑤𝑖𝑖, 𝑅𝑅𝑅𝑅𝑑𝑑 
tests if 𝑚𝑚𝑖𝑖𝑗𝑗 appears in the authorized range 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠(𝑊𝑊) using some decision-rule or threshold 
policy.  If so, 𝑚𝑚′s chances of acceptance may increase, otherwise 𝑚𝑚𝑖𝑖𝑗𝑗 rejects additional 
command processing.  𝑅𝑅𝑅𝑅𝑑𝑑  We assume 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 has perfect knowledge of the communication 
system, including all devices used to encode the circuit states.   

However, 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 does is unaware of any inherent secret RF-DNA characteristics that a 
source circuit employs as a natural signature encoding rule known by the 𝑟𝑟 𝑑𝑑 pairing of  
𝑇𝑇𝑅𝑅𝑠𝑠 and 𝑅𝑅𝑅𝑅𝑑𝑑 .  𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 may succeed in spoofing if and only if the RF-DNA fingerprint indicators 
of 𝑚𝑚𝑖𝑖𝑗𝑗 match the fingerprints of previously agreed upon  circuit state encodings used prior to 
communication.  The subspace of valid messages as observed by authenticator 𝑅𝑅𝑅𝑅𝑑𝑑, is unique 
for each device, however a receiver’s ability to sample a continuous RF-Event is imprecise and 
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therefore there are no perfect matches.  A tolerance interval may be effective in mitigating this 
imperfection.  Generally, any logical (digital) command can be decoded using localized RF 
component features when a policy has specified the communication source to destination path.  
We state this more formally as; 

𝑓𝑓𝜌𝜌𝑇𝑇𝑑𝑑�(𝑐𝑐𝑘𝑘 ,𝑚𝑚𝑖𝑖𝑠𝑠)  𝑤𝑤𝑖𝑖𝑠𝑠� = 𝑒𝑒𝑇𝑇𝑇𝑇𝑖𝑖 .                                                                (30) 

Where 𝑝𝑝𝑖𝑖 specifies 𝑓𝑓𝜌𝜌𝑇𝑇𝑑𝑑 as an authorized authenticator/observer of RF-Event  𝑤𝑤𝑠𝑠 
generated by device encoding rule 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠.  By discarding, or failure to consider useful physical 
RF evidence, it is possible for 𝑅𝑅𝑅𝑅𝑑𝑑 to accept 𝑚𝑚 as authentic using the logical bit-level 
credentials only.  Again, RF-Events having originated from an untrusted source, a classification 
of ‘authentic’ occur when logical credentials match.  To see this, select any arbitrary receiver 
of 𝑚𝑚𝑖𝑖𝑗𝑗 which employs conventional protocols to decode (29) to obtain the kth logical bit-level 
command 𝑚𝑚𝑖𝑖𝑗𝑗 ↦ �𝑐𝑐𝑖𝑖𝑗𝑗�𝑘𝑘 = 𝑐𝑐𝑘𝑘𝐵𝐵𝐻𝐻𝑇𝑇 without regard to the associated physical RF-DNA of 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 .  
Due to high demands for interoperability, there may be multiple instances of RF-events 
generating sources which generate  𝑚𝑚 that maps to the correct logical interpretations of 
command 𝑐𝑐’s logical (bits) credentials.  As an example, consider of mapping of 𝑒𝑒 = 3  
interoperable encoding devices that can transmit in only three authorized circuit source states 
𝒘𝒘𝒘𝒘  where  𝑟𝑟 = 3.  We have 𝑒𝑒𝑠𝑠 = 9 statistically unique messages are generated using the circuit 
source encodings to produce three logically equivalent commands that can be decoded by 𝑅𝑅𝑅𝑅𝑑𝑑.  
The state of the circuit during transmission of 𝑚𝑚 can originate from a single source or from 
multiple sources so long as they are physically distinct with respect to the final baseband signal 
modulation of the circuit’s RF carrier.  The probability of correctly guessing the AuthCount 
filed in Duncan’s work was 1/1000, which may be detectable in as few as 65 attempts using the 
CTMS. 

Example: When 𝑻𝑻𝑻𝑻 𝟑𝟑 = 𝑭𝑭𝑻𝑻𝑻𝑻 𝟑𝟑 encoding rule is used to encode circuit state 𝒘𝒘𝟑𝟑, a unique 
message 𝑪𝑪𝟑𝟑𝟑𝟑 is produced that is logically decodable by 𝑹𝑹𝑻𝑻𝑶𝑶  as a valid  command 𝒄𝒄𝟑𝟑 and is be 
expressed as;  �𝑭𝑭𝑻𝑻𝑻𝑻𝟑𝟑(𝒘𝒘𝟑𝟑)𝑪𝑪𝟑𝟑𝟑𝟑� = 𝒄𝒄𝟑𝟑𝑩𝑩𝑹𝑹𝑵𝑵. Notice that when devices 𝑻𝑻𝑻𝑻 𝟏𝟏 and 𝑻𝑻𝑻𝑻 𝟐𝟐 are used in 
an identical configuration, the logical decoding of 𝑪𝑪𝟑𝟑𝟑𝟑 = 𝑪𝑪𝟏𝟏𝟑𝟑 = 𝑪𝑪𝟐𝟐𝟑𝟑 when the physical 
characteristics of the RF-Event is discarded during receipt by   𝑹𝑹𝑻𝑻𝑶𝑶. 
• A.3.10 Preparing for Network Integration of Logical and Pathological 

Authentication Evidence  
The results of 𝐹𝐹 represents a subspace of encoded circuit source states collected as a 

distribution of 𝑒𝑒 independent samples collected from an authorized RF-Event 𝑤𝑤𝑠𝑠 .  For each 𝐹𝐹 
of 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠, an encoding rule is used to train 𝑅𝑅𝑅𝑅𝑑𝑑 to know the RF-DNA signature of a given claimed 
credential 𝑐𝑐𝑘𝑘BIN.   

After training, 𝑅𝑅𝑅𝑅𝑑𝑑 is capable of comparing the similarity of newly received instances 
of (15) encoded using (29) by conducting RF-measurements and decoding using (30).  For 
each RF-biomarker, measurement taken from a new sample of 𝑤𝑤𝑖𝑖, a decision threshold 𝑑𝑑𝑇𝑇 
provides classification support of logical credential claims using physical attribute 
augmentation.  A discussion of three options for choosing an optimal 𝑑𝑑𝑇𝑇 is next that may yield 
different classification results.  A binary response using a stated similarity for 𝑑𝑑𝑇𝑇 yields a simple 
‘0’ or ‘1’ (True or False) result after RF-DNA marker comparisons are made using (31) below 
and may not be useful in noisy environments.   
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An ordinal threshold provides the capability to accumulate multiple binary outcomes 
for a single RF-Event or continuous values.  Finally, a continuous 𝑑𝑑𝑇𝑇 yields a compared result 
value between ‘0’ and ‘1’, where a ‘0’ is not at all similar and a ‘1’ has perfect similarity.  A 
combination of each 𝑑𝑑𝑇𝑇 option may support expressive RF-biomarker vector interpretations of 
repeatable RF-Event measurements. 

A tolerance region threshold ′𝑒𝑒𝑡𝑡′ classifies acceptable Euclidean distance levels of 
similarity for new RF-Biomarker measurements. An upper and lower bound of algorithm 
performance, using𝑒𝑒𝑡𝑡’s decision rule, determines trust ratings which span a series of interactive 
trusts transactions [71].  Using an enhancement to the simple interaction trust algorithm, 
Duncan developed a consolidated trust management system (CTMS) which tracks the level of 
trust that 𝑑𝑑 has for 𝑟𝑟 using an interactive trust value (ITV) and a specified policy 𝑝𝑝𝑖𝑖 threshold 
boundary to provide appropriate responses [1].  In this article, enhancements extend a 2-state 
classification system to 4-states.  By adding additional information about prior pathological 
evidence, a multi-factor device specific (1-to-1) verification system using Bayes Theorem to 
improve the posterior probability that a claimed RF-Event credential truly originated from a 
trusted source.  Using two factors, the possible classification states of a transaction becomes 
more expressive to attribute authorized user, device and commands that occur in the network 
to four possible system states. 

The risk response indicates the level of support for authentic claim validations (𝑐𝑐𝑘𝑘BIN =
1).  In general, a higher level of similarity indicates a low risk (𝑑𝑑𝑙𝑙𝑉𝑉) of command acceptance, 
while a low level of similarity indicates a higher risk (𝑑𝑑ℎ𝑖𝑖) of uplink command acceptance.  A 
medium risk recommendation occurs when the similarity of a claimed credential is near 
tolerance boundaries.  The similarity risk responses using 3-levels is summarized as  

𝑅𝑅𝑅𝑅𝑑𝑑
𝑑𝑑𝑇𝑇(𝑐𝑐𝑘𝑘𝑃𝑃𝐻𝐻𝑃𝑃) = 𝑦𝑦%

𝑑𝑑𝑇𝑇 �
𝐻𝐻𝑅𝑅𝑏𝑏ℎ, 𝑦𝑦% ≥ 𝑑𝑑ℎ𝑖𝑖
𝑀𝑀𝑒𝑒𝑑𝑑, 𝑦𝑦% ⋚𝑑𝑑𝑙𝑙𝑉𝑉

𝑑𝑑ℎ𝑖𝑖

𝐿𝐿𝑀𝑀𝑤𝑤, 𝑦𝑦% ≤ 𝑑𝑑𝑙𝑙𝑉𝑉
 .                                                        (31) 

In order to augment a Cyber Operator in their task of maintaining the health of a network 
in accordance with policy, a set of decision rules aim to minimize errors in deciding the true 
origin integrity of claimed RF-Event.  The basic test involves the detection, measurement and 
analysis of new RF-Event comparisons to a template of trusted RF-Events.   Each RF-Event 
contains identification credentials of a known source.  The simple goal is to determine if the 
received RF-Event originated from a trusted transmitter or not.  A first step is defining a truth 
(oracle) template such that when new RF-Events arrive, the receiver can extract new 
measurements and make comparisons of its similarity level to a true benchmark signature of 
the claimed RF-Event.  Such previous observation using the same receiver reduces receiver 
bias.   

A receiver learns to recognize a device specific signature benchmark by observing 𝑛𝑛 =
1100 independent normal benign RF-Events in accordance with (15) that satisfies all 
properties of Table 13.   After observation of the events, a self-similarity test occurs that consists 
of all “𝑛𝑛-vs.𝑛𝑛” observations, measurement and analysis of fingerprints to establish the true 
benchmark similarity levels for each local RF-Biomarker of a composite RF-DNA fingerprint. 
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• A.3.11 Region of Interest for Waveform Watermark Selections. 
A specified ROI of a trusted device’s waveform is predetermined as candidates for RF-

DNA fingerprint credentials.  AN ROI can be all or a portion of a transient waveform emission 
originating from a trusted device 𝒘𝒘.  Desirable ROI candidates, for RF-DNA extraction, are 
standardized regions such as the preamble, midamble and postamble portions of a transmitted 
waveform [52].       

AN ROI marker candidate  𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒇𝒇𝑩𝑩  is defined as a subset of some chosen 𝒇𝒇𝑩𝑩 for a 
receiving device 𝑶𝑶 to target for RF-DNA fingerprint validation from 𝒘𝒘.  In general any distinct 
repeatable analog waveform contains distinct features that are extractable for RF-DNA 
fingerprinting.  This implies that RF-DNA fingerprinting can not only be performed on 
standardized invariant regions, but also on customized invariant regions.  For example, let some 
message 𝑪𝑪 be generated by some device 𝑻𝑻 and is propagated along a transmission circuit and 
is finally converted from digital to analog using a known modulation scheme.  If 𝑪𝑪 contains 
some invariant field 𝒛𝒛𝟏𝟏 and another invariant field 𝒛𝒛𝟐𝟐, then a standardized waveform carries 
some invariant modulation region that is attributable to the waveform itself, and it also carries 
some region of 𝒛𝒛𝟏𝟏 and 𝒛𝒛𝟐𝟐, which are also invariant.   

Whether or not the fields for 𝒛𝒛𝟏𝟏 or 𝒛𝒛𝟐𝟐 message state generations, as depicted in Figure 
36 are easily located within the waveform carrier immediately from RF-DNA extraction does 
not imply that these invariant regions do not exist. This is made obvious by the successful 
decoding of 𝒛𝒛𝟏𝟏 and 𝒛𝒛𝟐𝟐 by some receiver after successful synchronization and demodulation of 
the waveform carrier to interpret the bit-level fields.  

 

Figure 36.  Generalized Modulation of Invariant Message Fields Visualization Only 

• A.3.11.1  Policy-Based Pairing of Constituents. 
Full-Duplex interaction allows RF-DNA marker exchanges with all distinct members in 

all directions.  This policy requires the most receiver processing power and storage 
requirements, but is the easiest to configure as suggested in Table 30.   
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For each directed communication path that exists between (𝒘𝒘  𝑶𝑶) pairs, select some subset 
from 𝒇𝒇(𝒘𝒘) and transfuse RF-DNA fingerprint credentials into 𝑶𝑶’s profile to meet specified 
policy objectives.  This provides 𝑶𝑶 with knowledgeable credentials of 𝒘𝒘 so when 𝒘𝒘 attempts to 
communicate with 𝑶𝑶, then 𝑶𝑶 can authenticate the uplink’s trusted waveform 𝒘𝒘𝒘𝒘 claiming to 
originate from 𝒘𝒘. Device 𝑶𝑶’s knowledge of 𝒘𝒘 does not imply that 𝒘𝒘 possesses the same 
knowledge to authenticate a waveform state originating at 𝑶𝑶.  

 Unless 𝒘𝒘 is explicitly configured to have knowledge credentials of 𝑶𝑶 as specified by 
policy 𝒑𝒑, then 𝑶𝑶 cannot be authenticated by 𝒘𝒘, since such credentials may not exist in the full 
RF-DNA complement (𝑭𝑭𝒘𝒘+) of 𝒘𝒘.    A complete paring represents a device’s policy-based 
FULL-RF-DNA complement between (𝒘𝒘  𝑶𝑶) such that all necessary RF-DNA fingerprint 
credentials to authenticate 𝒘𝒘 are stored in 𝑶𝑶’s local storage profile and all vice versa if 𝑶𝑶 is 
authorized to authenticate transmissions received from s.  To achieve full duplex 
communication where each device can authenticate its linked neighbor, all authorized states of 
𝒘𝒘𝒘𝒘 events should be fingerprinted to collect RF-DNA.  The results are exchanged as credentials 
between specified devices prior to communication. 

For a full complement paring of 𝑭𝑭 = 𝟒𝟒, we obtain 16 possible full marker exchange 
pairings for a single ROI fingerprint model.  In Chapter IV, six ROI models varied by length, 
duration; sample start and sample stop points of previously collected fingerprints of model 𝒊𝒊.  
This yields 10626 possible combinations for policy development.  Figure 37 depicts a policy 
pairing scheme 𝒑𝒑 used to define link 𝒍𝒍 communication paths between endpoints 𝒘𝒘 and 𝑶𝑶.  The 
pairing 𝒑𝒑𝒊𝒊(𝒔𝒔,𝒃𝒃) describes a set of users 𝑪𝑪, ground station devices 𝑭𝑭 and or available satellites 
for RF-DNA credentials that are used to authenticate link transactions.   

On the left of Figure 37, 𝑪𝑪𝟏𝟏 is shown to have a policy that authorizes the use of all 
command sequences (highlighted in blue).  In addition, a (𝑪𝑪𝟏𝟏, 𝒄𝒄) pairing is made with 𝑭𝑭𝟏𝟏   given 
as  𝒑𝒑𝟏𝟏 = ((𝑪𝑪𝟏𝟏, 𝒄𝒄),𝑭𝑭𝟏𝟏).  The RF-DNA fingerprints are collected from appropriate waveform 𝒘𝒘 
states generated by 𝒘𝒘 such that the extracted RF-DNA fingerprints samples can be authenticated 
by each 𝑶𝑶 specified by policy 𝒑𝒑.  This process is completed for each ((𝑪𝑪, 𝒄𝒄),𝑶𝑶) pairing 
combination.  The resulting RF-DNA fingerprints are stored for policy-based link 𝒍𝒍 pairings as 
model 𝒊𝒊 as previously described.   

The final pairing of a 𝒘𝒘 𝑶𝑶 path is made to facilitate the transfusion of RF-DNA 
credentials into the local memory of specified destination device(s) 𝑶𝑶.  As shown in Figure 37, 
the full complement of 𝑭𝑭𝟏𝟏 contains the RF-DNA credentials from Sat1 and itself indicating that 
it is capable of authenticating waveform states 𝒘𝒘𝒘𝒘 received over downlink 𝒍𝒍 generated from a 
trusted source (Sat1).  The uplink path 𝒍𝒍 depicted in Figure 37, indicates that destination device 
(𝑶𝑶 ∈ 𝒊𝒊) = 𝑺𝑺𝒔𝒔𝑶𝑶𝟏𝟏 has a full RF-DNA complement containing RF-DNA credentials of all source 
(ground station) devices 𝒘𝒘 ∈ 𝒊𝒊 𝒘𝒘. 𝑶𝑶.𝑶𝑶 ≠ 𝒘𝒘, which may be generally desirable.  All possible 
pairings are not shown for image clarity. 
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Figure 37.  Policy-Based RF-DNA Marker Exchange Pairings 

   
• A.3.11.2 Covert RF-DNA Watermark Credentials 

This section describes the process of authenticating authorized waveform states using 
RF-DNA fingerprint credential keys as covert watermarks.  The scheme is inspired by the 
rolling code algorithm discussed in Chapter I.  There is no obvious disclosure of a fingerprinted 
ROI as before, however the end nodes discover the exact location that should be listened to 
during waveform inspection by utilizing a covert channel to pass credential keys. The purpose 
of this scheme is to mitigate imposter eavesdropping and sufficient sampling of an intercepted 
waveform to generate a replay message that mimics a valid RF-DNA credential.  A key factor 
is added to the 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, randomized prior to operation and transmitted so that each subsequent 
key for an ROI is different from the previous key in any transaction sequence.  Randomized 
key exchanges enhance the security of the RF-DNA credentialing scheme.  As an example, a 
repeatable waveform state naturally contains all possible features that can be extracted at any 
given instance of its existence.  Consider the case where a watermarked key is sent to indicate 
the ROI of a waveform for RF-DNA fingerprint extraction.  If the receiver already knows the 
exact location of the key, then an imposter attacker may exploit this nature.  When a watermark 
is invisible to the attacker, then this is more difficult.  By passing pre-determined keys randomly 
associating those values with valid RF-DNA credentials, it is possible to confuse the attacker 
and make their guess about which ROI to target and exploit more difficult.    
• A.3.11.3 RF-DNA Concerns with Applications for Mass Destruction.   

There are multiple concerns associated with the employment of RF-DNA credentials to 
include receiver memory size, circuit development for RF-DNA fingerprint marker extraction 
from authorized waveform states and network maintenance during circuit modifications and 
malicious capability of unintended employment of RF-DNA like credentials as covert 
watermarking.  The receiver’s memory size of a conventional CubeSat is limited for additional 
onboard processing of RF-DNA fingerprints.   
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On one hand, the local memory of a receiver may not be sufficient to store RF-DNA 
credentials that could provide self-evident waveform authentication.  On the other hand, it is 
not known how fast a comparison could be made if the comparison was temporarily stored on 
the receiver and a call is made to an off-site location for final verification.   Research should 
continue in determining optimal memory size and processing requirements to support real-time 
operations or multi-organizational access to shared spacecraft.  These implications suggest that 
a set of authorized waveform state credentials could exist for each participating organization, 
which must be stored locally for self-evident authentication to occur.  This implication may 
significantly reduce the scale of RF-DNA credential exchanges to backbone infrastructure 
transactions that provide device-only discrimination. As discussed in Table 30 above, a 
preamble based ROI provides the most general level of device discrimination of a standardized 
waveform for fingerprint comparisons.  In addition, as the number of distinct links grow so does 
the path policies and as a consequence the number of authorized waveform states increase.  
Attempts to extend a general waveform classification to achieve more expressive responses, 
ROIs should be carefully selected to reduce the size of standardized ROIs.  In general, a smaller 
policy size that specifies authorized waveform states provides the least amount of user 
attribution.  The smaller the subset of exchanged RF-DNA markers, the less storage is required. 
Normal network maintenance of adding, replacing and upgrading network components must be 
considered for RF-DNA augmentation.   

A.4 Conclusions 

A focus and requirement of some physical waveform requirements should be enforced 
in tomorrow’s network security plans.  Mass-destruction triggers, if placed in malicious hands 
could cause significant destruction without leaving a trace for attribution.  This suggests a need 
to develop a massive waveform database that focuses on the physical nature of waveforms 
instead of their logical interpretations or binary content.  In this way, we can take any logical 
value or message that is carried by a waveform and gain a deeper understanding of its origins 
using RF-DNA fingerprints.  As component changes occur, research should be done to identify 
the impact and effects on RF-DNA detection for a collected circuit fingerprint and memory 
emplacement.  Perhaps infrastructure network configurations that minimize major component 
changes should be initially approached.  It is obvious that if a circuit fundamentally changes, 
then any exchanged RF-DNA credential may not work.  In light of this situation, an upgrade 
mechanism should be employed to securely modify the memory of existing authenticators as 
well as provisioning for added communication paths to an existing or deployed network 
configuration. 
• A.4.1 Immediate Cause for Concern. 

Unintended consequences may occur with the full realization of distinct standardized 
waveform recognition.  As an immediate example, consider a bad actor who intends to create a 
mass casualty event by employing an RF-DNA-based remote controlled trigger.  Such a trigger 
can be emplaced inside the memory of a device that contains an explosive payload.  A carrier 
of the device may present the device as harmless to some innocent bystander.  As a person 
comes into range of the explosive device, his or her particular voice characteristics could trigger 
the explosive device leaving no trace of the true bomber.   
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This is not out of the realm of feasibility as a similar approach was recently employed to trigger 
a laptop bomb onboard an airliner [84].  Simply stated, a receiving device that has an emplaced 
RF-DNA credential may not be detected in a conventional RF probe because the incoming 
trigger has already been pre-determined and contains statistically unique features.  An 
unsettling situation that is similar to a one-time pad which uses encryption as the triggering 
response for interpretation. 
• A.4.2 Future Recommendations. 

Research that applies RF-DNA fingerprinting is ongoing and fairly new to the 
SATCOM community.  Network authentication augmentation is an initial first step to enhance 
network level authentication mechanisms and control access to critical spacecraft command 
and control boundaries.  A logical extension to device discrimination is user discrimination.  If 
we consider a cellular phone that employs some device recognition filter and we have a user 
that utilizes their voice as a trigger for some control function, then the combination of the device 
and the user now form evidence for attribution to the user and the device.  Research is 
recommend to explore the limits of discovering traces of RF-DNA evidence in known 
waveforms based on time and space.  Immediate applications for such recognition of RF-DNA 
markers include home and car security alarms systems, safes and gun cabinet lock controls.  
Research that augments the C2 of UAV swarms may benefit from RF-DNA fingerprint marker 
exchanges using multi-factor authentication credentials.  Such C2 could be useful for air 
delivery ventures where customers trust the secure delivery of purchased packages by sampling 
their voice characteristics ahead of time as the key to sign for deliveries.  If no such key exists 
within the UAV receiving mechanism, then there is no subsequent delivery made.  Such a 
scheme could also be used to conduct business transactions over the Internet for RF-DNA 
ecommerce credential exchanges.  In this effort, waveform authentication can be used by 
corporations like Amazon to strengthen online purchasing where buyer’s voices, fingerprint or 
PC and natural feature combination as the authorized waveform.  This added security 
mechanism can easily be implemented on existing PC and mobile devices that utilize digital 
voice mechanisms.  RF-DNA has the capability to incorporate any repeatable waveform state 
of a natural source.  
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ANNEX B: Ground Station Uplink Fingerprinting for CubeSat Overview 

The purpose of this section is to provide a documented record of this research effort.  
Given the nature of FM radiation and experimentation, the interested reader should seek and 
follow all safety recommendations with dealing with sustained exposure to RF equipment.  The 
attached ALFE (not listed) is a living document and is presented here as a flashpoint for lab 
safety considerations.  Each annex is written as a stand-alone document and was developed 
collectively with the goal of assisting a design of experimental approaches to conducting 
research on SATCOM link analysis using RF-DNA fingerprinting or future Cyber security 
enhancing mechanisms.  The actual code for the RF-DNA fingerprinting process is also a living 
developmental source code and is not presented as a significant part of this research.  Code 
Snippets that support specific code optimizations that are specific for SATCOM RF-DNA 
fingerprinting have been presented throughout the document.  Finally, the reader should consult 
the circuit diagram to understand the complexity of a SATCOM’s ground station and required 
background knowledge.  These collection procedures were adapted from Reising’s (Appendix 
A pages 68 – 74) work that employed the Agilent E3238S as the radio frequency signal 
collections (RFSICS) device.  The software defined radio models X310 and USRP 2922 are 
also employed to collect the RF-Event waveforms. 
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ANNEX C: How to Set Up CGA OS For GS Communications PC1 v3 

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Chris Lomanno 
Original Date: ~7Aug2015 
Editor/s: MAJ Tyrone Lewis and Chelsey Moeller 
Description: 
 

The purpose of this document is to provide detailed steps to place the ICOM and CGA 
software into communications mode.  From this mode of communication, the CGA will 
transmit. 

 
• C.1  Hardware 

o Model: HP 
o OS: Red Hat Enterprise Linux Workstation Release 6.3 
o Memory: 3.8 GB 
o Disk Space: 328.6 GB 

• C.2  Software 
o Neptune Common Ground Architecture  

1. To start CGA open a terminal window like the one shown in Figure 38 and type 
"csm" to open a Session 100 Manager: FS7-1 instance. 
 

 
Figure 38. CGA Terminal Session 100 Window 

2. From the Session Manager Screen, under the tab "Options"  
a. click "Projects” -> “C2B_Setup_UHF" 
 

3. Continue to click “cont” as the Neptune window depicted in Figure 39, loads scripts 
and device drivers.  If errors occur within the Neptune window click the yellow box 
labeled 
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"Cont"  // Allows the program to continue 

 
Figure 39.  Neptune Window In Cent Operating System 

4. Once the Neptune was completely loaded all necessary files and set drivers, the 
Commander Session 100 window will become active and at the command prompt we 
can enter the file that contains the telecommand messages as shown in Figure 40. 
To run the Automation code written by Mr. Christopher Lomanno, entitled 
C2B_RF_fingerprint_1001.per type into the command line box: 
 

"per C2B_RF_fingerprint.per"  //Original file 
   

"per C2B_RF_fingerprint_1001.per"  // Modified naming convention 
 

"per C2B_RF_fingerprint_101.per"  // Modified file with 101 bursts 
 

 The “C2B_RF_fingerprint.per” will command the ICOM to send 1001 pulses to 
the signal collection device (X310).  The current version will complete in approximately 17 
minutes. 
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Figure 40.  Tele command Message Generation on Cent OS PC 

5. We are now ready to transmit the automation code and generate transient pulses from 
the TNC to the ICOM.  The ICOM will then modulate the message using GMSK and 
the red LED light indicator should flash.   

i. To start the transmission click “enter” 
ii. To pause the transmission, click “pause” the lower right hand corner of 

the window. 
iii. To resume click “Cont” in the lower right hand corner of the window. 

6. To close the Commander Session, click X in the top right corner of Figure 41.  
7. To close the Session Manager, 

i.  Click Control -- > “Stop Node” -- > “SVR1” -- > OK 
ii. For example 2: Control -- > “Sab-stop” -- > “node-AFMC-3” 

(then click ‘ok’ when prompted) 
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Figure 41.  Stop Tele command Generation Server Prompt 

8. Return to the original terminal window (Open a new one if closed) 
a.  type "ipcs"  
b. Verify that all values = 2 under the "nattach" column. Wait for five seconds and 

type “ipcs” again to see if the column has been attached. 
 

i. If some value is not == 2 after waiting five seconds,  
type "ipcrm -m ########"   // where ####### is the shmid of the process 
where nattach isn't equal to 2. For example, if row 1 column nattach had a 
value !=2, then record the corresponding shmid value, and then type in the 
command above with this recorded shmid. 

 
This completes this portion of the guide.   

Notes for automation script modifications 
 

1) TO SEND FEWER PULSES: (Must have root permissions to copy and paste a 
new file for script execution)  You can edit the script so that it sends fewer pulses 
through the CGA. This is useful if you want to have (say) 20 pulses for testing 
purposes instead of sending 1001 pulses. Likewise, you can change it to send 2001 
pulses etc… 
a. copy “C2B_RF_fingerprint.per”  
b. paste the original file and rename to some new_fileC2B_RF_fingerprint_101.per 
c. Restart CMDR 

2) Repeat steps above and insert  
 
new_fileC2B_RF_fingerprint_101.per  
 
in the command line prompt. 

It's located in "/export_local/home/mc3ops/cga_2014REL1/exe".  If you edit the file save it then 
restart CMDR. 
 
2) Commands names and parameters are located in "c2b_cmds.txt" in 
"/export_local/home/mc3ops/cga_2014REL1/cga_proj/c2b/db/". 
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ANNEX D: How to Set Up the Recording (Collections) Laptop 
 
Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Evan Kain 
Original Date: ~08AUG2015 
Editors: Chelsey Moeller 
Description:   

This guide will take you through the process of setting up the recording laptop (PC2) of 
the circuit diagram. There will be information on what type of software is needed and also how 
to visually see the data pulse.  

• D.1  Hardware 
o Make: HP 
o Model: Elite Book 8560w 
o OS: Ubuntu 14.04 LTS (64-bit) 
o Memory: 15.6 GB 
o Disk Space: 231.6 GB 

• D.2  Software 
o GNU Radio Companion 3.7.7 
o Command Input Interface: Ubuntu Terminal 
o Center Frequency: 449.8MHz 
o Gain: 18dB 
o Sampling Rate: 5MSPS 
1. When powering on PC2 select the Ubuntu operation. 

i. To do this use the up and down arrow keys to highlight the Ubuntu.    
ii. Then click “enter” to select Ubuntu. 

Note the password for the PC is: Password!123 
2. Plug PC2 into an outlet for power supply.   

i. Note: PC2 cannot record if it is not plugged into a power outlet.  
3. Open a terminal window by clicking the “search your computer and online 

sources” tab found in the upper left hand corner of the screen.  
i. Type “Terminal” into the search bar.  

ii. Once the terminal icon appears, click on it to open a terminal.  
4. From the terminal window, type the following command: 

i.  uhd_rx_cfile  –args -addr=<IP Address> -f <center frequency> -g <RF 
Gain> --samp-rate=<sampling rate>  <filename>  

ii. The IP address is the IP address of the X-310 being used. For our purposes 
the IP address is 192.168.10.2 

iii. The center frequency is the center frequency of the recording in Hz. The 
center frequency for our set up is 449.8e6 Hz 

iv. The RF gain is the internal gain in dB that the SDR applies after receiving 
the signal. We are using the gain of 18 dB.  

v. The sampling rate is the rate at which the SDR will sample the signal in 
samples/second. The sample rate we want is 5e6 samples/second. 

vi. The filename is the name of the file where the data will be saved. 
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     The format being used for the file name is <make of transmitter>_<model>_<serial number 
of device>_g_<gain in dB on SDR>_p_<transmission power(preferably in Watts, but visual bars 
in this case)>_fingerprints 

<make >_<model>_<serial number >_g_<gain 
>_p_<TXPwr>_fingerprints 

a.  E.G. ICOM_9100_02001003_g_18_p_4_fingerprints. 
 

vii. The entire code should be similar to this e.g.   
 
uhd_rx_cfile  --args -addr=192.168.10.2-f 449.8e6 -g 18 --samp-
rate=5e6  ICOM_9100_02001003_g_18_p_4_fingerprints 
 

viii. Once you have typed the command into the terminal window click “enter” 
to begin recording data. If you are recording properly the screen should 
look like this: 

5. To stop recording click “ctrl+c” in the terminal window.  
6. To see a visual representation of the frequency domain on PC2, type the following 

command in the terminal you opened in step 2: 
 

 uhd_fft  --args -addr=<IP Address> -f <center frequency> -g <RF 
Gain> --samp-rate=<sampling rate> 
   

i. The parameters for this command will be the same as the parameters for 
the recording command from step 4. Note: You do not need a file name 
when running fft. 

1. If the transmission is working properly you should expect a peak 
around the expected transmission frequency.  

2. If there is no peak, try adjusting the gain or turning the “peak hold” 
option on.The peak hold option will be located near the top right of 
the window. 

7. If the noise level is too high, try lowering the gain.  
i. To do this close the current window and follow step 4 again and adjust the 

gain accordingly.  
8. The default save location for the recordings is the home folder.  

i. To find this click the icon labeled files in the upper left hand corner.  
ii. You should see a file named with the same name you entered during step 

4.i.5 that appears. 
9. To close the fft window click the “x” in the upper left corner or click “ctrl+c” in 

the terminal window.  
10. To transfer the saved file from PC2 to PC3 for RF-DNA Extraction; plug in your 

USB hard drive to PC2. 
i. Move the saved file to the USB hard drive for transfer to PC3. 

ii. Plug in the USB Hard Drive to PC3 and see Annex C: How to run 
MatLab scripts in PC3 for more information. 
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ANNEX E: How to Process the Collected Data Files with MATLAB 

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Chelsey Moeller 
Original Date: 26Aug2015 
Editor/s:  
Description: 

 The purpose of this guide is to step by step show you how to process the data you 
previously recorded on your PC2. This guide will tell you which parameters in the MatLab files 
that you will need to change to get the proper results.  
• E.1  Hardware 

o Make: HP  
o Model: Z820 Workstation 
o OS: Ubuntu 14.04 LTS (64-bit) 
o Memory: 125.8 GB 
o Disk Space: 1.8TB 

• E.2  Software 
o MATLAB 2015aX-CTU Application Version 5.2.8.6 

1. PC3 runs Ubuntu. Once turned on open MatLab by following these steps: 
a. Click the “search your computer and online sources” icon found in the upper left  
b. Once the window is open type “terminal” in the search bar, then click “enter.” 
c. When the “terminal” icon appears below the search bar, double click the icon.  
d. In the “terminal” window type “MatLab,” then click “enter.” 

2. Once MatLab is open you will need to add the MatLab files model_RF_2.m, 
RFDNA_fPrintGen_V7.m, MDAML_ClassifyMain_V8.m, 
MDAML_Verification_V8.m, and your data to the path for MatLab.  

a. Right click the folders containing these files. 
b. Click “add to path.” 
c. Click “selected folders and subfolders.” You now have all of your file paths  

3. Click the open folder in the in the upper left corner of the MatLab window. 
a. Click the “open” folder. 
b. Navigate to the file where your MatLab files model_RF_2.m, 

RFDNA_fPrintGen_V7.m, MDAML_ClassifyMain_V8.m, and 
MDAML_Verification_V8.m are all saved to. 

c. Double click each of the above MatLab files to open the MatLab editor window  
4. The first MatLab script you are going to run is model_RF_2.m.  

a. Navigate to the MatLab editor window, and click on the model_RF_2.m tab at 
the top of the screen.  

b. Navigate to line 41 to load your raw data collection 
i. Depending on the number of devices you line should look like: 

Devicestrings=[‘<file-data1>’; ‘<file-data2>’ ; ‘<file-data3>’ ; ‘<file-
data4>’]; 

ii. At line 124, you will need to change the first name to a desired name as:  
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                             save(‘<your-choice-of-file-name>’, ‘InSig’, ‘FingerPrints’, ‘DetParams’, 
‘XDelta’, ‘-v7.3’); 

iii. Take not of this file name. You will need it again. 
c. Click the “save” icon in the upper left corner of the window.  
d. Click the “run” icon at the top of the window.  
e. You should see on the other MatLab window the script running. 

5. The next MatLab script you will run is RFDNA_fPrintGen_V7.m. 
a. Return to the MatLab editor window, and click the tab 

RFDNA_fPrintGen_V7.m. 
b. At line 85, and 87 insert the file name that you created from step 4.b. 

i. The lines should look like this: 
ii. Line 85: InputFileName= ‘<your-file-name-from-part-4b>’; 

iii. Line 87: SaveFileName=’<your-file-name-from-part-4b>’; 
iv. You may also wish to change other parameter such as line 110 the 

DecFact or line 98, the SNRin values. Reference Annex <?>: 
fPrintGen_V7 for more information. 

c. Click “Save” in the upper left hand corner of the window. 
d. Click “Run” at the top of the window. 
e.  Once the MatLab script is finished running take note of the output file name. It 

should look similar to: <Input-file-name>_TimeDomfeats_DecFact=<#> 
6. You are now ready to run the script MDAML_ClassifyMain_V8.m. 

a. At lines 84 and 85 you will enter the file name (the output name from 5.e.) 
 line 84: InputFileName= ’ <Input-file-
name>_TimeDomfeats_DecFact=<#>’;   line 85: SaveFileName= 
‘<Input-file-name>_TimeDomfeats_DecFact=<#>’; 

b. You will also need to change the SNR values, number of pulses for training, and 
the plot control variables to your specifications. See annex <?>: 
ClassiffyMain_V8 for more information. 

c. Click “Save” in the upper left hand corner of the window.  
d. Click “Run” at the top of the window. 
e. You should notice a series of plots appear. 
f. After the script has ran take note of the name of the output file. It should look 

similar to: <Input-file-
name>_TimeDomFeats_DecFact=<#>_<#>SNRVals_DraModDev_<#>Feats 

7. Now the script MDAML_Verification_V8.m is to run. 
a. In line 52 load the file output from the script RFDNA_FPrintGen_V7. It should 

look like: Line 52: load <Input-file-name>_TimeDomFeats_DecFact=<#>.mat  
b. At line 55 you enter the file output from the script MDAML_ClassifyMain_V8 

that you previously ran. Line 55 should look like:     
    load <Input-file-
name>_TimeDomFeats_DecFact=<#>_<#>SNRVals_DraModDev_<#>Feats 

c. Choose a name to save the file name under at line 57.     
 Line 57: SaveFileName = ‘<file-name>’  

d. Click “Save” in the upper left hand corner of the window.  
e. Click “Run” at the top of the window. 
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ANNEX F: How to Set Up the Terminal Node Controller (TNC)  

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Evan Kain 
Original Date: ~08AUG2015 
Editor/s: Chelsey Moeller 
Description: 

 The purpose of this guide is to explain how to properly set up the physical 
connections for the Terminal Node Controller (TNC). These instructions are based off of using 
a Kantronics 9612 plus model TNC.  
• F.1  Hardware 

o Make: Kantronics 
o Model: Packet Communicator 9612 Plus 
o Serial Number: 919194? (number is located on bottom of device) 
o Operating Mode: KISS 
o Outgoing Port: 2 
o Baud Rate: 9600 

 
1. Connect the TNC to power using the power connection provided with the TNC. Use the 

port on the left rear side of the TNC for the connection. 
2. Connect the TNC to the transceiver using a 6-pin-mini-DIN male to DB-15 male 

connection. The 6-pin-mini-DIN side connects to the transceiver via the connection 
labeled DATA2.  

3. The 6-pin-mini-DIN connection can be found in the middle of the transceiver’s rear panel 
(See Figure 46 of Annex F: How to Setup the ICOM 9100 Device. 

4. The DB-15 male connection for the TNC is in the middle of the rear panel on the TNC.  
5. Next connect the TNC to the computer using a set of two cable connections. 

a. The first connection uses a male DB-25 to female DB-9 cable. The male DB-25 
connection is connected to the port labeled “computer” on the rear panel of the 
TNC. 

b. The second cable is a male DB-9 to USB. The male DB-9 end is connected to the 
female DB-9 connector from part 5.a. The USB is then plugged into PC1. 

c. This connection is labeled “PC1 to TNC” 
6. See Annex E: How to Set Up and Use the X-CTU Terminal Software. 
7. J16 is currently set as closed.  Default is open. 
8. Type “Display” on the terminal window to show a complete list of the TNC settings.  
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ANNEX G: How to Set Up and Use the X-CTU Software v3 

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Evan Kain 
Original Date: ~ 13AUG2015 
Editors:  Chelsey Moeller and MAJ Tyrone Lewis 
 

• G.1  Description: 
Note, the automation for transient burst generation is only functional in the intface kiss 

mode, which is the current MC3 default mode of operation.  When operating in the convers 
mode as done here for testing purposes in a lab environment, the burst generation must be 
performed manually.  The goal is to generate transient burst automatically.  These directions 
are provided to bring a new TNC into initial operation and then to perform transient burst 
generation tests in kiss mode.  If the TNC has already been set up, move to step eleven of this 
document. 

 
1. Download drivers if necessary. (Download/open X-CTU or other configuration 

software to use the packet communicator) 
2. Connect PC USB port to TNC’s Port 2 with specified cable found in Annex D: 

Setting Up the Packet Communicator’s Terminal Node Controller (TNC). 
3. Power on the TNC 
4. Ensure the connecting device (TNC) is recognized by the computer and that the 

proper drivers are installed.   
5. Open the X-CTU program 
6. Click on the terminal tab near the top of the screen to open the terminal window.  
7. You can Type “help” to display available commands, and type “help <command>” to 

access descriptions and directions for each command. 
8. From the command window, check to ensure that command mode is enabled. There 

should be a .cmd: directly to the left of the blinking cursor.  
 
Depending on the window output check one of these options: 

1. If screen has no output as shown in Figure 42 and Figure 43, enter the “C0 FF 
C0” hex command as follows: 

a. Click Assemble Packet (From the X-CTU Terminal Window) 
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Figure 42. X-CTU Software Output (Blank Screen) 

 

 
Figure 43.  X-CTU Assemble Packet Screen (Hex display) 

a. Click the HEX in the Display box shown in Figure 44.  
b. Type “C0 FF C0” in the “Assemble Packet” window 
c. Then click send data. 
d. To check that the command worked properly you should see 

information on your screen shown in Figure 45. 

 

 
Figure 44. X-CTU TNC Command Terminal 
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Figure 45.  X-CTU  Hex Command Executed 

 

2. If screen has unintelligible output, press  “*”  
a. At the prompt enter the call sign ( Default = Alice1 ) 

9. Enter the following command settings once you are in command mode and display a 
“.cmd:” on the terminal screen. 

i. Type “MAXUSERS 10” after the .cmd: 
ii. Type “XMITLVL 24” after the .cmd: 

10. To display the port number being recognized by the TNC, or to change the Port follow 
these steps: 

a.   Check port setting by typing the following command 
i. Type “Port” into the terminal window of the X-CTU software after the 

.cmd:  
ii. The terminal will then notify you of the port being used.  

 
b. If the port is not correct you can change it by following the below steps. Note: for 

the purposes of this setup the TNC must be set to port 2.  
i. Type “port  <number>” after the .cmd: in the terminal window. Note- 

(You cannot change the port in kiss mode.  You should be in Terminal 
mode for making such a change) 

ii. To verify the port changed refer back to step 10.a.  
 

c. To display the current interface mode: 
i. Type “intface” after the .cmd: in the terminal window. 

ii. The terminal will then display the current interface mode. Note: we need 
the interface to be in KISS mode. 

iii. If this is not the desired mode, refer to step 10.d.  
d. To change the interface to kiss: 

i. Type “intface kiss” after the .cmd: 
ii. To verify the change refer back to step 10.c.  

e. Power cycle the TNC for five seconds.  The basic configurations for operation are 
complete. 
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• G.2  Verify Manual Conversation Capability Between TNC and ICOM 
 

11. To verify the physical connection between the TNC and ICOM you must be in “convers” 
mode. While in the converse interface, commands can be sent to the transceiver directly 
by typing into the window or by assembling a packet. To set this up follow these steps.  
 

a. Type “convers” at the .cmd prompt. 
b.  Click the “Assemble Packet” button  

i. After the Send Packet window opens type a message, then click “enter.” In 
this window you can choose between sending packets using ASCII or 
hexadecimal encoding using the two buttons on the bottom right corner 
labeled “ASCII” and “HEX.”  

ii. Click “send packet” and see if the red Xmit light for port 1 and the ICOM 
transmit LED both light up then they are communicating. If they do not 
light up the packet was not sent. 

iii. If the LEDs did not light up: 
1. Be sure to check the connections again and make sure the software 

is working properly. 
2.  If this does not fix the issue, go back to the terminal window and 

type “paclen” This should display the maximum packet length as 
<number>/<number>. 

3.  If the packet length is larger than the number of bytes (displayed 
next to “byte count” in the lower left corner of the “send packet”   
window) in the message you are trying to send there are at two 
ways to fix the issue outlined below.  

4. The first method is to type “0D 0A” when sending hexadecimal 
packets.  

5. Another way is to type “paclen <number>” in the terminal window 
to change the packet length to match the size of your commands.  

6. If neither of these works consult your TNC manual. 
12. If you would like to exit converse mode  

a. Click “ctrl + c” to exit out of converse mode (3 times in rapid succession). 
b.  To check to see if you exited properly out of converse mode refer back to step 

10.c. 
c. If this does not work go back and follow step 10 again.  
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ANNEX H: How to Set up the ICOM 9100 Front End Transceiver 

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Chelsey Moeller 
Original Date: ~ 14AUG2015 
Editor/s: Chelsey Moeller 
Description: 

 This guide will help you to properly set up your ICOM 9100 transceiver. This guide 
will walk you through making the correct setting changes.   
• H.1  Hardware 

o Make: ICOM 
o Model: ICOM-9100 
o Serial Number:02001133,02001255,02001075, 02001003 
o Transmission Frequency: 450MHz 
o Data Mode: On 
o 9600bps: Enabled 
o Transmission Mode: FM 
o Continuous Transmission: Off 
o RF Power: 4 Bars (7.5 Watts?) 
o Modulation Scheme: GMSK Digital Phase Modulation 
o CI-V Address:(depends on device) 
o CI-V Rate: 19200 

 
1. First insure all of the proper physical connections are made. Insure that none of the 

leads are bent.  
a. The ICOM should be connected from its DATA2 socket to the TNC DB-15 

socket through a male 6-pin-mini-DIC to male DB-15 cable. 
b. The ICOM should have a power cable connected to power. 
c.  An N-type connection from the ICOM to SMA connection on the X-310. 

i. This cable should have two inline 30dB attenuators connected in 
series.  

ii. On one end of the attenuators there should be a BNC connector that is 
then connecting a coaxial cable to the ICOM through an N-type 
connection. 

iii. The other end of the attenuator should have an SMA male to male 
cable connecting the attenuators to the X-310. 
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Figure 46.  ICOM-9100 PIN Diagram. 

2. Turn on the device by holding down the power button. Reference page 1 of the ICOM 
manual for more information. 

3. Hit the AM/FM button until the FM frequency band is selected. Reference page 43 of 
the ICOM manual for more information.  

4. Hold the F-INP button to key in the frequency manually. Our preferred frequency is 
450 MHz Reference page 6 of the ICOM manual for more information. 

5. Hold down the MENU button to enter a SET submenu. Reference page 3 of manual. 
a. Press F-1/F-2 to navigate to option 57. Turn main dial to set the 9600 baud 

rate. Reference page 173. 
b. In the same submenu use F-1/F-2 to navigate to option 61 to set the CI-V rate 

to 19200 using the main dial. References page three. 
c. Navigate to option 60 to set the CI-V address to an address unique from other 

radios. Reference page 3. 
d. Press menu to save these settings. Reference page 3. 

6. Insure that RF Power knob is turned all the way counter clockwise. Then press the 
TRANSMIT button to turn the continuous transmission on (The MAIN LED should 
be red, and on). Then rotate the RF Power knob clockwise to increase power to four 
bars. Reference page 1 and 3 of the ICOM manual. 

a. Turn the transmission off before proceeding. Make sure the red LED is off or 
green. 

7. Hold down the AM/FM button for one second until a ‘D’ appears. Reference page 43 
of the ICOM manual. 
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ANNEX I: Swapping Out ICOM Radios for Transceiver Testing 

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Chris Lomanno 
Original Date: ~ 7AUG2015 
Editors: Chelsey Moeller and MAJ Tyrone Lewis 
Description:  

The purpose of this guide is to swap out BRAND NEW ICOM transmitter device radios.  
Where swap out means that we have a configuration file that selectively communicates to an 
ICOM device using its uncommented scripts. 

If the ICOM serial numbers are KNOWN, then follow the instructions in the document 
"MC3 Users Guide" on page 35 to swap out devices. 

When using a radio you have not used before (Unknown Serial ID), follow these 
instructions to Find the device ID. 

 
1) Ensure the cable is connected from the ICOM to PC via USB connection. (INSERT PIC 

HERE) 
2) Open a terminal window to obtain the command prompt for example [fs7@fs7-1].  

a. Type in "lshal -m". This command will find all new devices that are attempting to 
communicate on the USB port going into the PC from the ICOM as connected from 
step 1.   

  You'll see a lot of  activity in the terminal. 
 You're looking for some lines that look like: 
 
 "usb_device_10c4_ea60_IC_9100_02001255_A added" 
 "usb_device_10c4_ea60_IC_9100_02001255_A_if0 added" 
 
4) Record the device ID as the number that appears near the end of the line statement above 
e.g. "02001255".  
5) Press Control-C to break out of "lshal -m" 
6)  Safely remove the ICOM device cable connection from the PC port.  
 
B. After finding the Device ID as described above, modify the “99-cga.rules” file so that the 
code script can find the proper device ID.   
 

1) To Modify the file 99-cga.rules obtain the directory of the file location and type:  
a. "sudo gedit  /etc/udev/rules.d/99-cga.rules" 
Alternatively  
b.  “sudo gedit” //The gedit software opens a blank document 
   Click File Open 
Navigate to the file location of the KNOWN stored file for 99-cga.rules. 
Open the file for editing, using gedit. 

 
2) There are groups of four lines of code each prefaced with the     comment: 
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"######## Radio 02001003 ###########" 
KERNEL==”ttyUSB*”, SYSFS{serial}==”ICOM-9100 02001003 A”, SYMLINK+=”UHFICOM”, 
GROUP=”uucp”, MODE=”0666” 
KERNEL==”ttyUSB*”, SYSFS{serial}==”ICOM-9100 02001003 A”, SYMLINK+=”ICOM1”, 
GROUP=”uucp”, MODE=”0666” 

 
where 02001003 is the ID number for the radio.  
 

If there is multiple device IDs listed in the file, then find the radio you wish to 
communicate with.  Ensure the lines corresponding to the four lines of code are not commented 
out for your device of interest.  Comment out all other devices that are not of interest for 
communication.   For example, when the code looks like  the sample script below: 

      
       #########RADIO 02001255############# 

KERNEL=="ttyUSB*", SYSFS{serial}=="ICOM-9100 02001255 A", SYMLINK+="UHFICOM", 
       GROUP="uucp", MODE="0666" 

KERNEL=="ttyUSB*", SYSFS{serial}=="ICOM-9100 02001255 A", SYMLINK+="ICOM1", 
       GROUP="uucp", MODE="0666" 
 
       #########RADIO 02001133############# 

#KERNEL=="ttyUSB*", SYSFS{serial}=="ICOM-9100 02001133 A", SYMLINK+="UHFICOM", 
#GROUP="uucp", MODE="0666" 
#KERNEL=="ttyUSB*", SYSFS{serial}=="ICOM-9100 02001133 A", SYMLINK+="ICOM1", 
#GROUP="uucp", MODE="0666" 

 
#########RADIO  02001075#################### 
#KERNEL=="ttyUSB*", SYSFS{serial}=="ICOM-9100 02001075 A", SYMLINK+="UHFICOM", 
#GROUP="uucp", MODE="0666" 
#KERNEL=="ttyUSB*", SYSFS{serial}=="ICOM-9100 02001075 A", SYMLINK+="ICOM1", 
#GROUP="uucp", MODE="0666" 

 
Then the code will work for Radio 02001255 but neither of the others.  

To add another radio to this script follow the instructions above for copy and paste the 
four lines as a new entry into the script and then modify the Device ID number in the code with 
the ID number from your new radio (if you don’t know this radio number, see part A). 

 
3) Save the file (99-cga.rules) and close it. 
This completes the step to set up a new ICOM and prepare the device for communication 
between the     CGA CentOS< -- > PC < -- > TNC < -- > ICOM 
  
C.  Prepare the transceiver to transmit 

1. There are two cables to change. Cable one is the TNC to PC (USB – DB-25 and cable 
two is a DB-15 to DATA2 for the ICOM to TNC. Make sure the Packet Communicator (TNC) 
is connected properly (via an SHF cable) to the ICOM you are using. Also make sure the ICOM 
you are using is connected to the receiver properly (via an N-type to SMA connection). 

2. Adjust the settings on the ICOM radio. For more information, consult Annex H: 
Setting Up the ICOM 9100. 

3. See power attenuation calculations for important transmission setting to avoid 
damage to devices and or personnel. 
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ANNEX J: How to Set Up the USRP X-310 SDR for Fingerprint Collections 

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Evan Kain 
Original Date: ~08AUG2015 
Editor/s: Chelsey Moeller 
Description:  

 The purpose of this guide is to explain the physical connections needed for proper 
set up of the X-310. 

 
• Hardware 

o Make:  Ettus 
o Model: USRP X310 
o Serial Number: F4F7CC 
o Firmware Version: 11 
o IP Address: 192.168.10.2 
o Gain: 18dB 
o Recording Center Frequency: 449.8MHz 
o Sampling Rate: 5MSPS 
o Save File Location: Internal Hard Drive of Receiving Laptop  

Note: GNU Radio will need to be set up on PC2, for recording with the X-310. 
1. Plug the X-310 into a power outlet using the power cord included.  

a. The power cord will connect to the SDR using the port labeled “PWR” on the far 
left of the rear panel.  

2. Connect the SDR to the recording laptop using a 1G Ethernet cable. 
a.  The cable will connect to the SDR using the leftmost Ethernet port labeled 

“1G/10G ETH.” This port will be the first Ethernet port from the left on the rear 
panel on the X-310. 

b. The Ethernet cable will also connect to the left Ethernet port of PC2. This port is 
found on the left side near the rear of the laptop. 

3. Connect the recording antenna or wired antenna connection using the SMA 
connection labeled “TX/RX” inside the “RF A” section on the front panel of the 
SDR. 
a. The SMA connection will be the second connection from the left. 

4. Turn the power on using the “PWR” button on the far right of the front panel. 
5. Warning: Do not send more than -15 dBm of power for the “TX/RX” connection. 

You will damage the X-310. 
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ANNEX K: How to Install GNU Radio v1 

 
Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Chelsey Moeller 
Original Date: 27Aug2015 
Editor/s: 
Description: 

 This guide is to help you install GNU Radio on your recording laptop (PC2). If 
GNU Radio is already installed you can skip to Annex A: Operation of CGA on PC1 and Annex 
H: Setting Up the USRP X-310 SDR. Annex B: Setting Up the Recording Laptop (PC2) has 
information on software needs. 

 
1. First you will need to open a terminal in your PC2.  
2. You will need to download GNU Radio. If you have already done this skip to step three. 

To download 
a. Type “git clone http: //gnuradio.org/git/gnuradio.git” 
b. Or type “git clone git: // gnuradio.org/gnuradio.git” 

3. Now you need to configure and build your GNU radio.  
a. Type in the terminal window:  

i. cd gnuradio 
ii. mkdir build 

iii. cd build 
iv. cmake ../ 
v. make 

4. After you build the GNU radio you need to do software self-check. 
a. Type into the terminal window “make test” 

5. You can now install the GNU radio for general use. 
a. Type in the terminal window “sudo make install” 
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ANNEX L: How to Calculate Load Attenuation for Power Transmission 

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Daniel Crane 
Original Date: 14Aug2015 
As of Date:  24SEP15 
Editor/s: Chelsey Moeller, Tyrone Lewis 
 
Power Loss between the ICOM and X310. 
We connect the ICOM to the X310 through: 

1)  an N-type to female SMA cable 
2) A male SMA to female BNC adapter 
3) A 2.5 foot coaxial cable 
4) A female BNC to female BNC adapter 
5) A second 2.5 foot coaxial cable identical to (3) 
6) A female BNC to female SMA adapter 
7) A 30 db attenuator 
8) A second 30 db attenuate (identical to (7)) 
9) A  SMA cable 

Total Loss: 
Rough estimates for the loss in each of the nine wires or adapters. 
 

1) A rough estimate I found was 0.78 dBs’ 
2) A maximum of 0.5 dBs and a minimum of 0.03 dBs’ 
3) About 0.425 dBs 
4) Less than 0.1 dBs 
5) 0.425 dBs 
6) Max of 0.5 dBs and min of 0.03 dBs’ 
7) 30 dBs (obviously) 
8) 30 dBs 
9) 0.2 dBs 

Altogether, the total dB drop from the ICOM to the X310 will be: 
0.78+0.5+0.425+0.1+0.425+0.5+30+30+0.2 = 62.93 dBs’ 

Thus, because the maximum dBm the X310 can take is -15 dBm, the maximum power 
we can send from the ICOM will just be -15+62.93 = 47.93 which is equal to 62.087 Watts.  
However, because our attenuators are only rated at 20 Watts we certainly don’t want to be 
transmitting at over 20 Watts anyway. We also don’t want to be sending almost exactly -15 
dBm’ s into the X310. But this does show us that we may increase the power coming from the 
ICOM if we wish.  Figure 47 provides a quick reference for estimated power for the X310. 

 



www.manaraa.com

 

227 

 

 

Figure 47.  Load Attenuation for TX-RX Transmissions 

Table 32.  Power Attenuation 

 
 

Watts dBM  -Loss ~63dB
0.000032 -15 -77.5475

0.0001 -10 -72.5475
0.000316 -5 -67.5475
0.000794 -1 -63.5475

0.001 0 -62.5475
0.002 3.0103 -59.5372
0.003 4.771213 -57.776287

1 30 -32.5475
2 33.0103 -29.5372
3 34.771213 -27.776287
4 36.0206 -26.5269
5 36.9897 -25.5578
6 37.781513 -24.765987
7 38.45098 -24.09652

7.5 38.750613 -23.796887
8 39.0309 -23.5166
9 39.542425 -23.005075
10 40 -22.5475
11 40.413927 -22.133573
12 40.791812 -21.755688
13 41.139434 -21.408066
14 41.46128 -21.08622
15 41.760913 -20.786587
16 42.0412 -20.5063
17 42.304489 -20.243011
18 42.552725 -19.994775
19 42.787536 -19.759964
20 43.0103 -19.5372
30 44.771213 -17.776287
40 46.0206 -16.5269
50 46.9897 -15.5578
60 47.781513 -14.765987
70 48.45098 -14.09652
80 49.0309 -13.5166
90 49.542425 -13.005075

100 50 -12.5475

Eff TX= (7.5W  -63dB)  

= -23.79dBm 
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ANNEX M: Naming Conventions Data File Storage  

Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Chelsey Moeller 
Original Date: 27Aug2015 
Editor/s: 
Description: 

The purpose of the R data store is for storage directly from the capturing device. It stores 
raw data as IQ data, and has the following naming convention: 

 
<make>_<model>_<serial number or other unique device identifier>_g_<gain in dB on SDR 
settings>_p_<transmission power (preferably in Watts, but in visual bars for now)> 

The following is an example of this naming convention for an ICOM 9100 with the 
serial number 02005468 collected using a receiver gain of 24dB and a transceiver power of 3 
bars: 

 
ICOM_9100_5468_g_24_p_3 

The R data store allows for the data to be transported quickly and easily from PC2 to 
PC3. In order to store files in the R data store, the SDR recording command’s (see annex 
<number>) filename parameter will have a filename that uses the naming convention given 
above. After this initial storage, the data is moved from PC2 to a removable hard drive and 
again to PC3 form the removable hard drive. 

 
The N data store provides a .mat file which contains the variables and parameters used 

for pulse detection as well as statistic generation. In addition, it houses variables which contain 
these pulses and statistics. The data store has the following format: 

 
Section 1:<make>_<model>_<serial number or other unique device identifier>_ 
Section 2: g_<gain in dB on SDR settings>_ p_<transmission power (preferably in Watts, but in 
visual bars for now)>_analysis_bursts 

Section 1 is then repeated and concatenated for each device. Section 2 is then appended 
to the repeated section 1.  The following is an example of this naming convention for several 
ICOM 9100 transceivers with the serial numbers 02001234, 02001255, 02001003, 02001235, 
and 02009876 collected using a receiver gain of 18dB and a transceiver power of 4 bars: 

 
ICOM_9100_1234_ ICOM_9100_1255_ ICOM_9100_1003_ ICOM_9100_1235_ 
ICOM_9100_9876_g_18_p_4_analysis_bursts 

The purpose of the N data store is to pre-process the raw IQ data into pulses that can be 
easily read by MATLAB scripts and compute the statistics needed for fingerprint generation. 
The A data store holds the computed fingerprints from the tested devices. It contains statistics, 
features, and full fingerprints which are used to identify the various devices. Each file in the 
data store is named according to the following convention: 

 
Section 1:<make>_<model>_<serial number or other unique device identifier>_ 



www.manaraa.com

 

229 

 

Section 2: g_<gain in dB on SDR settings>_ p_<transmission power (preferably in Watts, but in 
visual bars for now)>_fingerprints 

Section 1 is then repeated and concatenated for each device. Section 2 is then appended 
to the repeated section 1.  The following is an example of this naming convention for an ICOM 
9100 with the serial number 02004968 collected using a receiver gain of 12dB and a transceiver 
power of 5 bars: 

 
ICOM_9100_4968_g_12_p_5_fingerprints 

The purpose of the A data store is to hold a fingerprint file which can be easily loaded 
into and used by the classification and verification programs. 

Note: The 0200 at the beginning of the ICOM 9100 serial numbers is common to all 
ICOM 9100 transceivers and is thus omitted.  
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ANNEX N: How to Capture Waveform Data Instructions 

 
Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Daniel Crane 
Original Date: 14Aug2015 
Editor/s: Chelsey Moeller 
 

1. Turn on transmission computer 
2. Turn on Kantronics Packet Communicator 
3. Turn on ICOM radio 
4. Turn on SDR 
5. Turn on receiving computer. 
6. Check physical connections from the transmission computer to the packet communicator 

to the ICOM to the SDR to the receiving computer 
7. Open X-CTU software on transmission computer. 

a. If screen has unintelligible output, press  * and then enter call sign 
b. If screen has “.cmd,” type “intface” 

i. If the output is not “intface kiss,” type “intface kiss” 
c. If screen has no output cycle the power by turning it off, waiting five seconds, and 

then turning it on again. 
i. Keep cycling the power until there is output on the screen. 

8. Type |2a to change the port to 2a. 
9. Click “assemble packet,” type a packet payload, and click “send packet.” 
10. If red “XMit” light does not light up on packet communicator, there is a problem with the 

computer to packet communicator connection.  
a. Type “convers” into the X-CTU terminal to enter conversation mode.  
b. Try sending a packet again. 
c. If this does not work, cycle the power.  
d. If this does not work, there may be a problem with the physical connection.  

11.  Follow Chris Lomanno’ s MC3 ground station commander instructions to switch ICOM 
configurations for the transmission computer as well as the transmitted command and 
payload. 

12. Configure ICOM to transmit at 450MHz from the main band. 
a. Hit AM/FM button until FM frequency band is selected. 
b. Hold the F-INP button to begin keying in the frequency using the numbered 

buttons on the top left of the front face of the ICOM. 
c. Hold the MENU button for 1 second to enter the SET submenu. 
d. Press F-1 or F-2 to navigate to option 57, the 9600 baud rate.  
e. Rotate the main dial to turn this option on. 
f. Navigate to option 61 to set the CI-V rate to 19200 using the F-1 and F-2 buttons 

as well as the main dial. 
g. Navigate to option 60 to set the CI-V address to an address unique from the other 

radios.  
h. Press menu to save these settings. 
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i. Briefly press TRANSMIT to turn continuous transmission on (the MAIN LED 
should be red) and rotate the RF POWER knob clockwise to increase or counter-
clockwise to decrease RF power to 4 bars. 

j. Make sure the MAIN LED is green or off before transmission. If the light is red, 
press the TRANSMIT button to turn off continuous transmission. 

k. Hold AM/FM button until a D appears in the top left corner of the display screen 
to turn the data mode on. 

13. Open the Linux command terminal on the receiving computer.  
14. Type the uhd_rx_cfile recording command found in memory. 

a. The following settings should be saved 
i. addr=192.168.10.2 

ii. f: 449.8e6 Hz 
iii. g: 18dB 
iv. samp-rate: 5e6 samples/second 
v. filename follows format laid out earlier in documentation 

(“debug_dev_<device id>_g_<gain in dB>_p_<bars of power on ICOM> 
b. Note: To access a GUI for an fft, replace ud_rx_cfile with uhd_fft and remove the 

file name from the recording command. 
15. After the receiving computer indicates that it is successfully recording, wait 20 seconds 

and begin sending packets from the transmission computer. 
16. Copy the bit file from the home folder of the receiving computer to an external drive. 

Eject the drive, and move the file from the removable drive to the desktop computer to be 
processed. 
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Figure 48. Statistics for RF-Biomarker Candidates b1-b4 
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ANNEX O: Simple Gold Standard Truth Reference File Set-Up 
Table 33. A2 Gold Standard Validation Development 

RF-DNA Marker Exchanges: Gold Standard Truth Reference file 

Inputs:  
𝑒𝑒 =    Infectious                 // Infectious Pulses that may cause Network Disease 
B =   Claim                  // Benign Pulses that are not attributable to Network Disease  
𝑝𝑝 =                     //  threat Prevalence Rate   
TRUTH = [1, 1, 1, … 1];   // True Condition of Pulse in Claim file All Ones 
GSClaim = [ Claim Truth ]; 
 
Begin 
InfectedRows = randperm(size(GSClaim,1)); 
if p > 0 
        for v = 1:length(InfectedRows) 
            GSClaim(INF(v),:) = D(INF(v),:); % <--- Infectious 
Payload 
            TRUTH(INF(v),:) = 0; 
        end 
    end 
    B = GSClaim; 

Return: GSClaim 
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ANNEX P: Wired RF-DNA Collections Configuration 

P1. Preliminary Configuration 
The very nature of the generated waveform and its fingerprinted regions is directly 

related to a statistical RF-DNA result since the waveform is a direct product of the signal 
transformations that propagate through a physical circuit.  The wired circuit depicted in Figure 
49 represents the resulting RF lab experimentation circuit for RF-DNA collections and 
performance testing.  Each component of the circuit is labeled with a letter.  After each label, 
the component’s role is provided along with a corresponding icon.   For example, the device 
used to generate the initial message for collections is shown as (label | description) PC1| PC1: 
msg (message) generator in Figure 49a. 

R

A

N

(b)
TNC

(a)
PC1: msg Generator

(f)
PC2: Collector

Path Conf:
-63dB Cable

(e)

Transmitter:
ICOM-9100:

(c)

Receiver:
X310 (Sampler)

(f)

Data1:
Profiles

(i)
PC3: Extractor

(d)
Signal/Region of 

Interest:
GMSK/Preamble

Data2:
MDA/ML 
Models

(h)

(j)

Data3:
 RF-DNA

Fingerprints

(k)

 
Figure 49.  Wired Uplink Circuit for RF-DNA Fingerprint Collections 

 
For each device of interest, PC1 passes a series of msg to the terminal node controller 

TNC (b) using a serial RS232 connection.  The TNC converts the msg using AX.25 and 
transmits msg to the UHF ICOM-9100 transceiver (c).  The transceiver wraps the msg using a 
GMSK modulated waveform to produce the analog SOI (d) with an estimated output power of 
7.5W through the wired connection (e).  The wired cable induces a 63dB load attenuation of 
the ICOM’s output power.  The X310 (g) software defined radio (SDR) receives and collects 
samples from the SOI at a rate of 5Ms/s with an 18dB SNR gain.  As the X310 samples of each 
incoming waveform’s modulated msg, the distinct characteristics contained in each burst 
sample are stored in PC2 (f) in a raw file format in 𝑹𝑹 (h) as instantaneous amplitude, frequency 
and phase values.  PC3 (i) is then used to extract the statistical RF-DNA fingerprints from (h) 
using specified ROIs and feature setting parameters.  
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P2. Improved Configuration Using Point to point SDRs 
 

(b)
TNC

PC1: msg Generator
“Hello World” = w

(a)

PC2: 
RF-Measurement(s)
Extractor/Collector

(f)

Path Conf:
-30dB 

(Cable only)
(e)

Transmitter (Tx):
USRP-2922:

(c)

Data1:
Raw 

Waveform
(h)

Signal/Region(s) of 
Interest:

2-GFSK Preamble/
Full-Wave I/Q

(d)

Data3:
RF-Biomarker(s)

(j)

Receiver (Rx):
USRP-2922:

(g)

CAT6 CAT6

Data2:
 RF-DNA
Signature

(i)

 

Figure 50. Improved RF-DNA Benchmarking Configuration  

 

P3. Improved Configuration for ICOM-9100 Collections 
PC2: 

RF-Measurement(s)
Extractor/Collector

(f)

Path Conf:
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Figure 51. ICOM-9100 Using USRP 2922 as RF-DNA Credential Extractor. 

P4. Improved Configuration for Abuse Case and Near Real-Time Analysis 
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Figure 52. Experimental Configuration for Real-Time Test (Wireless Only!!) 
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Figure 53. Simple circuit diagram 
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Table 34. LabVIEW settings for RF-DNA Collection Profiling  
Receiver ID USRP2922 

(Cir4) 
Collector 2

Transmitter ID USRP2922 
Collector 1 

(Cir5)
Environmental 

Conditions
Wireless 
Chamber

Collected SNR 18
Modulation 

Scheme
2-FSK

Carrier 
Frequency

449.900M

Filter 
Frequency 

(Offset From 
Center 

Frequency)

100.000k

Sampling Rate 1.000M
Pulse Duration 6.399m

Number of 
Pulses

1.100k

Sampled Points 
in Each Pulse

6.400k

Pulse Length in 
Samples

6.390k

Trigger 
Amplitude 
Threshold

300.000m

Percentage 
from Beginning 

of Pulse

0

Percentage 
from End of 

Pulse

18

NZ Samples 
Before Pulse

10

Demodulation None
Bandwidth 20.000k

FM Deviation 450.000M
FSK Deviation 1
# Subregions 10
# Subsections 8

Output Bit 
Stream  
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ANNEX Q: Tolerance Region Calculations 
 
 
%% ToleranceFactorGK(n,coverage,confidence,m,nu,d2) 
% Call the function called "ToleranceFactor.m" to compute the tolerance 
% region.  Provide the following inputs 
n= 150; % numberOfIncPulses; 
m = 1; % Number of independent samples 
nu = m*(n-1); 
d2 = 1/n; 
alpha = .05; % Confidence Significane level 
% proportion = 1-tol; % Use to make Ty's method equivalent to this one 
proportion = .95; % Content of Population considered 
coverage = 1 - proportion; 
confidence = 1 - alpha; 
kFactor = ToleranceFactorGK(n,coverage,confidence) 
  
%% Run Loop after Computing Tolerance Region/Interval 
for k2=kFactor; 
    for l = 1:size(Y,2); 
        pdX=fitdist(Y(:,l),'Normal'); 
        ci = paramci(pdX,'Alpha',alpha); 
        % Added the abs function to avoid negative levels 
        z3U = abs(mean(ci(:,1)+ (k2*mean(ci(:,2)))/1)); 
        z3L = abs(mean(ci(:,1)- (k2*mean(ci(:,2)))/1)); 
        z2U = abs(mean(ci(:,1)+ (k2*mean(ci(:,2)))/2)); 
        z2L = abs(mean(ci(:,1)- (k2*mean(ci(:,2)))/2)); 
        z1U = abs(mean(ci(:,1)+ (k2*mean(ci(:,2)))/3)); 
        z1L = abs(mean(ci(:,1)- (k2*mean(ci(:,2)))/3)); 
        % 2- Return 8x6 Zone Boundaries for AvgRFDNASig 
        zonesTOL = [zonesTOL; z3U z2U z1U z1L z2L z3L]; 
        ciTOL = [ciTOL; ci]; 
    end 
end 
% ---> END Tolerance Interval Zone 
References:  [60] [67]. 
 

 

Figure 54. RF Origin Integrity Risk Acceptance 
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ANNEX R: Interactive Trust Algorithm Extensions 
 
 
% Interactive Trust Algorithm Extensions 
Defaults 
% Goal = 1; 
% PhiUPP = 1; 
% PhiLOW = 1; 
% CounterE = 0; 
% MAXPENALTY = 1; %Between 2 and 2.5 
% MEDPENALTY = 1; %Between 1 and 2 FOR CASE E 
% Bonus = 1; 
% Reward_Offset1 = 1; 
for i= 1:min(length(SCA),length(GSMatrix)) 
     
    %% Set Up Transaction Settings for System State Classification and I-Trust Marker adjustments 
    % Factor 2 is new,  Given Status of F1 = 1 here is CLAIMED.  Implies a logical mechanism has 
authenticated the transaction. 
    % If F2 = 0, then this credential has failed even though F1 Passed. 
    %% ADD PHYSICAL RF-DNA TEST HERE 
    if RF_DNASupport == 1  % RF-DNA Augmentation is ON 
        % F1 = Factor 1 = Logical (Bits) Classified Result 
        F1 = round(SCA(:,i)); % Factor 1 (ITV AuthCount Credential Result) 
        %         F2 = round(SCA(:,i)); 
        %         F2 = Factor 2 = Physical (RF-Measurment) Classified Result 
        F2 = round(F2_TRUTH(:,i)); % Factor 2 (FPrint auth credential Status Result) 
        %         F2 = round(RFDNA_dT(:,i)); % Factor 2 (FPrint auth credential Status Result) 
        %         F2 = round(RF_DNAodT(:,i)); % Binary test Result Using Ordinal dT 
        %         F2 = round(RF_DNAzdT(:,i)); % Binary Test using Continuous dT 
        %         F2 = ZEROS(:,i); 
        %         F2 = F1; 
         
        %% Compute Extension parameters if RF-DNA Augmentation is "ON" 
        if F1 == 1 && F2 == 1 && RF_DNASupport ==1 
            %             a = a*(2); % Bonus Calculation 
            a = a*(Bonus); 
            Reward_Offset1 = a; 
        elseif F1 == 1 && F2 == 1 && RF_DNASupport ==0 
            a=a; 
            Reward_Offset1 = 1; 
            ForgiveFactor = 1; 
        end 
        % CASE E GOAL:  Decrease Reward because Fingerprint Failed 
        if F1 == 1 && F2 == 0 && RF_DNASupport ==1; 
            %             ForgiveFactor = 1; 
            PHI = MEDPENALTY; 
            B = (B_start)*PHI; 
            CounterE = CounterE + 1; 
            Reward_Offset1 = 1; 
        elseif F1 == 1 && F2 == 0 && RF_DNASupport ==0; 
            Reward_Offset1 = 1; 
            B = B; 
        end 
        % CASE F 
        if F1 == 0 && F2 == 1 && RF_DNASupport ==1 && Goal == 1 
            PHI = PhiUPP; 
            PHI = .2 
            ForgiveFactor = PHI; 
        elseif F1 == 0 && F2 == 1 && RF_DNASupport ==1 && Goal == 0 
            PHI = PhiLow; 
            ForgiveFactor = PHI; 
        end 
        % CASE D 
        if F1 == 0 && F2 == 0 && RF_DNASupport ==1 
            ForgiveFactor = .75; 
            PHI=MAXPENALTY;  % Use [2, {MAXPENALTY = 2.25}, 2.5, 2.75, 3] 
            B = (B_start)*PHI; 
            B = B*PHI;  % Use if testing RF_DNASupport ON|OFF 
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        elseif F1 == 0 && F2 == 0 && RF_DNASupport ==0 
            %             PHI=1; 
            %             B = B*PHI; 
            ForgiveFactor = 1; 
            Reward_Offset1 = 1; 
        end 
    else 
        %% RF-DNA Augmentation OFF 
        % USE Default 2-State system parameters for initialization 
        F1 = round(SCA(:,i)); % Factor 1 (ITV AuthCount Credential Result) 
        %         F2 = 0;  % RF-DNA Augmentation is OFF 
        F2 = F1; % RF-DNA Augmentation is OFF 
        %          F2 = round(RFDNA_dT(:,i)); 
        Reward_Offset1 = 1; 
        ForgiveFactor = 1; 
    end 
     
    %% CASE C When Open_Session_Tij > 0 && [F1 = 1, F2 = 1] 
    % If [L=1,P=1] & Prev_Trust > 0 
    if F1 == 1 && F2 == 1 && Open_Session_Tij > 0 
        C = 1;  % ValidUser & Valid Device  % Classify Transaction as Cooperation in nature 
        %Con-Man Extension Updates for COOPERATION interaction 
        B = B; 
        Gamma_coop_DISC = 1 - abs(B); 
        a = min((a + Gamma_coop_DISC * (a_start - a)),a_start); % a is never > a_start 
        % END CON-MAN Extensions 
        Current_Tij = (Open_Session_Tij + (a*(1-Open_Session_Tij))); % Yu Ver 
        %         Current_Tij = (Open_Session_Tij + (a*(1-Open_Session_Tij)))*Bonus; % Ty Ver 
        %         Current_Tij = (Open_Session_Tij + a)/(1-min((abs(Open_Session_Tij)),abs(a)))% 
Duncan ver 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountCoop = CountCoop + 1; 
         
        %% CASE C when Open_Session_Tij < 0 F1 = 1 F2 = 1  [L=1,P=1] Tij <0 
    elseif F1 == 1 && F2 == 1 Open_Session_Tij < 0 
        C = 1;  % ValidUser & Valid Device  % Classify Transaction as Cooperation in nature 
        B=B; 
        Gamma_coop_DISC = 1 - abs(B); 
        a = min((a + Gamma_coop_DISC * (a_start - a)),a_start); % a is never > a_start 
        Current_Tij = (Open_Session_Tij + a)/(1-min((abs(Open_Session_Tij)),abs(a))); % Yu Ver 
        %         TransTrustCals = (Open_Session_Tij + (a*(1-Open_Session_Tij))) %Duncan Version 
        %         Current_Tij = (Open_Session_Tij + (a*(1-Open_Session_Tij)))*Bonus; % Ty Ver 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountCoop = CountCoop + 1; 
         
        %% CASE C when Open_Session_Tij == 0 F1 = 1 F2 = 1 [L=1,P=1] 
    elseif  F1 == 1 && F2 == 1 && Open_Session_Tij == 0; 
        C = 1;  % ValidUser & Valid Device  % Classify Transaction as Cooperation in nature 
        %Con-Man Extension Updates to a for COOPERATION interaction 
        Gamma_coop = eC * abs(Open_Session_Tij); 
        a = min((a + Gamma_coop_DISC * (a_start - a)),a_start); % a is never > a_start 
        B=B; 
        Current_Tij = (a); %Yu Ver 
        %             Current_Tij = (Open_Session_Tij + a)*Bonus; % Ty Ver 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountCoop = CountCoop + 1; 
        %If Interaction == DDEFECTION (D) then compute trust as follows 
         
        %% CASE E When Open_Session_Tij > 0  F1 = 1 F2 = 0  [L=1,P=0] 
        % Moderate Forgiveness Here 
        % Attack Category:  Outsider Threat (IMPOSTER ACTOR) 
        % Logical Mechanism Result is Positive 
        % Physical Mechanism Result is negative for Fingerprint match and 
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        % is referred to as being potentially INFECTIOUS 
        % GOAL:  Reduce REWARD since FINGERPRINT MATCH FAILED!! 
    elseif  F1 == 1 && F2 == 0 && Open_Session_Tij > 0 
        E = 1;% AuthUserOnly & InvalidDevice Fingerprints Out of Tolerance 
        %%Con-Man Extension Updates to a for COOPERATION interaction 
        B=B; 
        Gamma_coop_DISC = 1 - abs(B); 
        %         a = min((a + Gamma_coop_DISC * (a_start - a)),a_start); % a is never > a_start 
        %Start Test 
        if RF_DNASupport ==0 
            a = (min((a + Gamma_coop_DISC * (a_start - a)),a_start)*Reward_Offset1); % Ty Version 
        else 
            a=0;  % No forgiveness increase Bonus is given in this case 
            %             a = (min((a + Gamma_coop_DISC * (a_start - 
a)),a_start)*Reward_Offset1); % Ty Version 
        end 
         
        Current_Tij = (Open_Session_Tij + (a*(1-Open_Session_Tij))); % Yu Ver 
        %         Current_Tij = (Open_Session_Tij + (a*(1-Open_Session_Tij)))*Bonus; % Ty Ver 
        %             Current_Tij = (Open_Session_Tij + a)/(1-
min((abs(Open_Session_Tij)),abs(a)))% Duncan ver 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountEImposter = CountEImposter + 1; 
         
        %% CASE E and Open_Session_Tij < 0 F1 = 1 F2 = 0 
    elseif F1 == 1 && F2 == 0 && Open_Session_Tij < 0 
        %Con-Man Extension Updates to a for COOPE 
        E = 1;% AuthUserOnly & InvalidDevice Fingerprints FPRINT = INFECTIOUS 
        B=B; 
        Gamma_coop_DISC = 1 - abs(B); 
        if RF_DNASupport ==0 
            a = min((a + Gamma_coop_DISC * (a_start - a)),a_start)*Reward_Offset1; % Ty Version 
RFDNA AUG 
            Current_Tij = (Open_Session_Tij + a)/(1-min((abs(Open_Session_Tij)),abs(a)));  
        else 
            Gamma_def_DISC = eC * abs(Open_Session_Tij); 
            B = (B - Gamma_def_DISC * (1 + B))*ForgiveFactor;% RFDNA Penalty(Ty) 
            a = a * (1 - abs(B)); 
            Current_Tij = (Open_Session_Tij + (B*(1+Open_Session_Tij)));% Yu Version 
        end 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountEImposter = CountEImposter + 1; 
        %% CASE E when Open_Session_Tij == 0 F1 = 1 F2 = 0 
    elseif F1 == 1 && F2 == 0 && Open_Session_Tij == 0; 
        E = 1;% AuthUserOnly & InvalidDevice 
        Gamma_coop_DISC = 1 - abs(B); 
        B=B; 
        Gamma_coop = eC * abs(Open_Session_Tij); 
        %         a = min((a + Gamma_coop_DISC * (a_start - a)),a_start); % a is never > a_start 
        a = min((a + Gamma_coop_DISC * (a_start - a)),a_start)*Reward_Offset1; % Ty Version RFDNA 
Aug 
        % Notice that --> "Open_Session_Tij" == 0 
        Current_Tij = (Open_Session_Tij + a); % Yu Ver 
        Current_Tij = (a); % Yu Ver 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountEImposter = CountEImposter + 1; 
    end 
     
    %%  Case F When Open_Session_Tij > 0 F1 = 0 F2 = 1 
    % Normally we would Penalize for a Incorrect Bit- Sequence 
    % Here, we consider a fingerprint match and we decrease the penalty for 
    % such an incorrect logical sequence.  The trust is still decreased, but at a reduced  

Rate.  Beware!!! This could indicate an INSIDER THREAT 
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    if F1 == 0 && F2 == 1 && Open_Session_Tij > 0 
        F = 1; % InvalidUser & AuthDeviceOnly 
        %Con-Man Extension Updates to a for DEFECTION interaction 
        Gamma_def_DISC = eC * abs(Open_Session_Tij); 
        B = (B - Gamma_def_DISC * (1 + B))*ForgiveFactor;%RF Penalty(Ty ver) 
        a = a * (1 - abs(B)); % Reward/ Forgiveness 
        %         B = (B - Gamma_def_DISC * (1 + B)) % Duncan Ver 
        Current_Tij = (Open_Session_Tij + B)/(1-min(abs(Open_Session_Tij), abs(B)));% Yu Version 
        %             TransTrustCals = (Open_Session_Tij + (B*(1-Open_Session_Tij))) %Duncan Vers 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountFCon = CountFCon + 1; 
         
        %%  Case F When Open_Session_Tij < 0 F1 = 0 F2 = 1 
    elseif F1 == 0 && F2 == 1 && Open_Session_Tij < 0 
        F = 1; % InvalidUser & AuthDeviceOnly 
        %Con-Man Extension Updates to a for DEFECTION interaction 
        Gamma_def_DISC = eC * abs(Open_Session_Tij); 
        B = (B - Gamma_def_DISC * (1 + B))*ForgiveFactor;%RF Penalty Reduction(Ty ver) 
        a = a * (1 - abs(B)); 
        %         B = B - Gamma_def * (1 + B); 
        Current_Tij = (Open_Session_Tij + (B*(1+Open_Session_Tij)));% Yu Version 
        %             Current_Tij = (Open_Session_Tij + B)/(1-min(abs(Open_Session_Tij), 
abs(B)))% Duncan Version 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountFCon = CountFCon + 1; 
         
        %%  Case F When Open_Session_Tij == 0 F1 = 0 F2 = 1 
    elseif F1 == 0 && F2 == 1 && Open_Session_Tij == 0; 
        F = 1; % InvalidUser & AuthDeviceOnly 
        %Con-Man Extension Updates to a for DEFECTION interaction 
        Gamma_def_DISC = eC * abs(Open_Session_Tij); 
        %         B = B - Gamma_def * (1 + B); 
        B = (B - Gamma_def_DISC * (1 + B))*ForgiveFactor;%RFDNA Penalty(Ty) 
        a = a * (1 - abs(B)); 
        Current_Tij = (Open_Session_Tij + B); 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountFCon = CountFCon + 1; 
         
 %%  Case D When Open_Session_Tij > 0 F1 = 0 F2 = 0 
    elseif F1 == 0 && F2 == 0 && Open_Session_Tij > 0 
        D = 1; % InvalidUser & InvalidDevice 
        %Con-Man Extension Updates to a for DEFECTION interaction 
        Gamma_def_DISC = eC * abs(Open_Session_Tij); 
        %         B = B - Gamma_def_DISC * (1 + B); %Duncan Ver 
        B = (B - Gamma_def_DISC * (1 + B))*ForgiveFactor;% RFDNA Penalty(Ty) 
        a = a * (1 - abs(B)); 
        Current_Tij = (Open_Session_Tij + B)/(1-min(abs(Open_Session_Tij), abs(B)));% Yu Version 
        % TransTrustCals = (Open_Session_Tij + (B*(1-Open_Session_Tij))) %Duncan Vers 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountDefect = CountDefect + 1; 
         
        %%  Case D When Open_Session_Tij < 0 F1 = 0 F2 = 0 
    elseif F1 == 0 && F2 == 0 && Open_Session_Tij < 0 
        D = 1; % InvalidUser & InvalidDevice 
        %Con-Man Extension Updates to a for DEFECTION interaction 
        Gamma_def_DISC = eC * abs(Open_Session_Tij); 
        %             B = B - Gamma_def_DISC * (1 + B); %Duncan Ver 
        B = (B - Gamma_def_DISC * (1 + B))*ForgiveFactor;% RFDNA Penalty(Ty) 
        a = a * (1 - abs(B)); 
        Current_Tij = (Open_Session_Tij + (B*(1+Open_Session_Tij)));% Yu Version 
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        %         Current_Tij = (Open_Session_Tij + B)/(1-min(abs(Open_Session_Tij), abs(B)))% 
Duncan Version 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountDefect = CountDefect + 1; 
        %%  Case D When Open_Session_Tij == 0 F1 = 0 F2 = 0 
    elseif F1 == 0 && F2 == 0 && Open_Session_Tij == 0; 
        D = 1; % InvalidUser & InvalidDevice 
        %Con-Man Extension Updates to a for DEFECTION interaction 
        Gamma_def_DISC = eC * abs(Open_Session_Tij); 
        %             B = B - Gamma_def_DISC * (1 + B); %Duncan Ver 
        B = (B - Gamma_def_DISC * (1 + B))*ForgiveFactor;% RFDNA Penalty(Ty) 
        a = a * (1 - abs(B)); 
        Current_Tij = (Open_Session_Tij + B); 
        Close_Session_Tij = Current_Tij; 
        Trust_Vector = [Trust_Vector; Close_Session_Tij]; 
        Open_Session_Tij = Close_Session_Tij; 
        CountDefect = CountDefect + 1; 
    end 
    time = time + 1; 
    a_Vector = [a_Vector;a]; 
    B_Vector = [B_Vector;B]; 
    PairedF1_F2 = [PairedF1_F2; F1 F2]; 
End 
References: [1] [2] [71] [72] 
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ANNEX S: Examples 

• S.1 Example: Receiver Perspective of Self-Evident Credential Classification. 
Assume 𝑶𝑶 is capable of detecting an incoming waveform 𝒘𝒘 from a set of authorized 

communication members of model 𝒊𝒊.  Let 𝑶𝑶 receive some authorized instance 𝒘𝒘𝒘𝒘 from 𝒘𝒘 for 
bit-level augmentation concerning the contents of 𝑪𝑪.   The determination of the identity of 𝒘𝒘 
by 𝑶𝑶 is self-evident if and only if 𝑶𝑶 owns the physical layer evidence (i.e. RF-DNA credentials) 
which statistically describe the event stimulus of s’s generated waveform state 𝒘𝒘𝒘𝒘 prior to 
processing the logical contents of 𝑪𝑪.   In order for this claim to be true, all properties listed in 
Table 13 must hold.  Recall, since 𝑶𝑶 has previously received some incoming waveform 
emission 𝒘𝒘 over link 𝒍𝒍 we can assume that a standardized modulation scheme was detectable 
by the receiver that supports the P2P communications path. Link 𝒍𝒍 has an existing policy 𝒑𝒑 that 
exists between (𝒘𝒘 𝑶𝑶).   

Using the assumptions above, Property-1 is satisfied since the waveform had to be 
detected if it was received.  If we assert that 𝑶𝑶 is only able to listen to incoming GFSK 
modulated messages on the 400-512 MHz frequency with a channel spacing of 25 kHz, then 
we can satisfy Property-2 since transmitters or receivers of any waveform 𝒘𝒘𝒊𝒊 using a 
standardized modulation scheme may physically carry the logically encoded contents of 𝑪𝑪 [75] 
[77].  Property-3 is satisfied by asserting that a particular device 𝒘𝒘 is authorized to communicate 
with device 𝑶𝑶 if a policy pairing 𝒑𝒑 exists for such a specified path. As such, it is implied that 𝒘𝒘 
has some physically distinct markers which do not have to be explicitly revealed for 
authentication.  That is to say that the distinguishing marker could have been predetermined or 
transmitted through some covert mechanism or channel (e.g. separate TDMA timeslot) or it can 
exist as a natural consequence of analog waveform generation using a standardized modulation 
scheme.    

It is not yet obvious that the represented event of 𝒘𝒘𝒘𝒘 was in fact distinctly generated by 
𝒘𝒘 without sampling an RF fingerprint using the 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 to target an ROI and make a comparison 
to a known result that was distinctly produced by 𝒘𝒘 during the development of 𝒊𝒊.  This enables 
𝑶𝑶 to listen and distinguish between whom (i.e. which 𝒘𝒘 most likely generated the event) is 
talking instead of what (event interpretation of some response) is communicated by 𝒘𝒘 in 𝑪𝑪.  
When an extracted RF fingerprint sample, processed by 𝑶𝑶 yields a statistically unique result of 
the event’s measurable features (i.e. a match) then Property-4 is satisfied. It was stated in the 
above claim that 𝑶𝑶 has self-evident credentials to identify source 𝒘𝒘.   

Authenticator 𝑶𝑶 can authenticate 𝒘𝒘 using trusted preplaced RF credentials for 
comparison to incoming waveform RF fingerprint sample extractions.  If upon comparison, a 
match exists, then those physically distinguishable waveform feature extractions made using 
ROI marker(s) of 𝒘𝒘𝒊𝒊 are now assumed to be inherently generated by 𝒘𝒘. This profound 
assumption is justified by the fact that the physical characteristics of the extracted fingerprints 
suggest a statistically significant result that cannot dismiss the uniqueness of the compared 
sample to a known physically-determined credential.   

Since all properties of Table 13 have been satisfied and 𝑶𝑶 possesses emplaced RF 
credential of 𝒘𝒘, it can be concluded that the generated features of event 𝒘𝒘𝒊𝒊 can be statistically 
attributed as originating from device* 𝒘𝒘 as claimed and its origin integrity is therefore self-
evident to authenticator 𝑶𝑶, namely 𝒘𝒘𝒘𝒘.                                                                                              ∎ 

 

*Note, a validated self-evident credential does not imply that the logical contents of 𝑪𝑪 are authorized.  In this case, the waveform state, as 
received, is statistically significant for attribution to an authorized physical origin device (i.e. source 𝒘𝒘).  At the time of this writing, there is no 
known research on RF-DNA exchange mechanisms which attributes a user to a specified circuit or device. 
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• S.2 Example2: Receiver-focused Self-Evident Classification. 
In a BiONet, each constituent 𝑶𝑶 inherently understands the nature of its neighbor’s 

physical waveform characteristics.  That is, d has an internal sampling of authorized waveform 
states that contain the frequency, amplitude and phase statistics.  We refer to quantifiable 
statistics of a waveform’s characteristics as its voice (e.g. a child understand through learning, 
the voice of its mother in a noisy social gathering).  As a natural consequence, each 𝑶𝑶 can 
accurately distinguish the voice of foreign or anonymous device waveforms 𝑤𝑤𝑎𝑎 from those 
spoken (generated) by trusted neighbor devices within acceptable levels of accuracy.  In the 
inspirational case of a child that has learned their mother’s voice, yet mistakes their aunt’s voice 
as their own mother’s until some other correlating cue emerges which disqualifies the aunt’s 
voice as being the authentic voice of mom.  Genetic inheritance influences the DNA structure 
of children, however factors such as social conditioning mechanisms and environmental factors 
are considered to formalize whom a child trusts.   

Inspired by genetics and social conditioning concepts, this algorithm adapts these 
concepts to enable artificially inherited RF-DNA so that devices that share RF-DNA markers 
are more likely to trust the contents of their voices.  A policy-based RF credential pairing allows 
devices to artificially inherit the RF-DNA of its specified neighbors for the purpose of self-
evident identification.  The term inherit refers to the physical emplacement of localized RF-
DNA credentials into the memory of authenticating devices.  Such inheritance is accomplished 
prior to deployment of an electronic communications network with the aim of supporting the 
policy’s goals requirements and objectives.  Such an expressive policy lends itself to support 
multi-organizational Cyberspace mission sharing collaboration in SATCOM ecosystems by 
bridging their trusted networks using RF-DNA bridges (RF-DNAB).   

 
Figure 55.  A Pathological Bridged Relay using an RF-DNA Chain-of-Trust 

 
For example, the physical layer of network security boundaries can be augmented by 

bridging multiple instances of distinct BiONets to support scarce resource sharing.  Distinct 
BiONets 𝑻𝑻 and 𝒁𝒁 are connected through some shared infrastructure bridging device 𝒃𝒃 depicted 
in Figure 55.  This implies that both networks have authorized device 𝒃𝒃 as a trusted source.  
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Since each BiONet has distinct network authentication boundaries defined by its collection of 
authorized links 𝒍𝒍, there must be a policy for device 𝒃𝒃 that shares the RF-DNA markers of a 
source device 𝑻𝑻𝒘𝒘 and a source device 𝒁𝒁𝒘𝒘.  Likewise, a subset of 𝒃𝒃’s RF-DNA markers are shared 
with some authenticator in the respective BiONets indicated as 𝑻𝑻 𝑶𝑶 and 𝒁𝒁𝑶𝑶. 

Given a set of devices for fingerprinting, let model 𝒊𝒊 be the specified collection of all 
authorized satellite communication transceiver devices 𝑶𝑶 such that each constituent 𝑶𝑶 forms a 
network (e.g. CubeSat).  The size of M shall be determined by the cardinality of 𝑭𝑭 as modeled 
during the RF-DNA fingerprinting process and classified using MDA/ML where classification 
size is greater than two.   We define the set of distinct constituent devices as 𝑭𝑭 = {1,2,3, …𝑩𝑩}.  
Each 𝑭𝑭𝑭𝑭 (the RF fingerprints of device 𝑭𝑭) contains one or more RF-DNA fingerprint 
collections of 𝑟𝑟𝑅𝑅𝑧𝑧𝑒𝑒 ≥  𝑛𝑛 for each constituent device. The letter 𝑩𝑩 is the number of fingerprint 
credentials that have been emplaced into the memory of an authenticator according to the path 
specification of policy 𝒑𝒑. 

  
• S.3 Example3:  P2P Link Credential Extraction and Authentication. 

A P2P SATCOM network is depicted in Figure 56 where 𝒑𝒑 exists for the (𝒘𝒘  𝑶𝑶) path 
𝒍𝒍. Let 𝒘𝒘 =  𝑹𝑹𝟏𝟏 and 𝑶𝑶 =  𝑺𝑺𝟒𝟒. Upon receipt of an ROI marker 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊  (e.g. indexed value) by 𝑶𝑶, 
the RF-DNA fingerprint is extracted from 𝒘𝒘 and statistically compared to a known value 
(previously emplaced) which 𝑺𝑺𝟒𝟒 may inherently understand about 𝑹𝑹𝟏𝟏.  That is, 𝑺𝑺𝟒𝟒 compares 
the claimed covertly carried fingerprint 𝑹𝑹𝟏𝟏(𝒇𝒇𝑩𝑩) received to 𝑹𝑹𝟏𝟏(𝒇𝒇𝑩𝑩) using 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒇𝒇𝑩𝑩  to extract a 
specified RF-DNA fingerprint sample from 𝒘𝒘’s ROI.  S4 compares the claimed identity to a 
known credential for a potential match upon receipt of the claimed credentials from R1.     

  

 
Figure 56. 2-Device Ground Station to CubeSat RF-DNA Exchange  

 

For clarity, the local memory of each authenticator device 𝑶𝑶𝒔𝒔𝑪𝑪𝑶𝑶𝑻𝑻 contains all authorized 
𝒘𝒘 RF-DNA fingerprints in accordance with policy-based configurations.  This is a necessary 
requirement for member authentication during communication exchanges.  Following the 
approach described above, more expressive pairings of P2P links are achievable if we enforce 
three requirements.   
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First, 𝒘𝒘 must be a member of 𝒊𝒊. Secondly, 𝒘𝒘’s RF-DNA markers must be emplaced by 
𝑶𝑶 as the credential authenticator.  In other words, the policy must have previously specified that 
𝑶𝑶 could receive messages from 𝒘𝒘.  Thirdly, a receiver cannot authenticate anonymous sources.  
The last requirement can be met during processing where either a classification type is unknown 
and there is no binary ID field, or there is a known classification type and no data is present in 
the ID field. 
• S.4 Example4:  Handling Anonymous Messages. 

Let it be the case that device 𝑶𝑶 receives an incoming waveform 𝒘𝒘 from some 
anonymous device 𝒘𝒘𝒔𝒔 which contains a properly modulated message 𝑪𝑪 using GMSK in a UHF 
SATCOM ecosystem.  Under the conditions of the BiONet, 𝑶𝑶 cannot authenticate the identity 
of 𝒘𝒘 using RF-DNA fingerprinting.  All of the desirable properties sufficiently exist in 𝒘𝒘 
however; 𝑶𝑶 lacks the necessary inborn or preplaced memory credentials to make an 
authentication using RF-DNA fingerprints for 𝒘𝒘𝒔𝒔.  We could stop here, but a deeper discussion 
allows enhanced understanding as to why not.   

Consider the pairing between 𝒘𝒘𝒔𝒔𝑶𝑶 as being distinct, then 𝒘𝒘𝒔𝒔must be a member of the 
MDA/ML model 𝒊𝒊 by earlier arguments.  It is known that 𝑶𝑶 is a member of 𝒊𝒊, which implies 
𝑶𝑶 must possess RF-DNA credentials of at least one other member 𝒘𝒘 ∈ 𝒊𝒊 because it has been 
designated as a receiving authenticator device.   As a result, 𝑶𝑶 inherited knowledge of 
physically-determined credentials of at least one source 𝒘𝒘.  However, since 𝑶𝑶 is preconfigured 
with authorized credentials that are necessary and sufficient for self-evident authentication of 
specified states of 𝒘𝒘 containing 𝑪𝑪, the specified states of 𝒘𝒘 must originate from distinct 
members of model 𝒊𝒊.  Since 𝒘𝒘 = 𝒘𝒘𝒔𝒔 then 𝒘𝒘𝒔𝒔 must be a member of 𝒊𝒊.  Now, each constituent 
of 𝒊𝒊 is distinct, and the statistical features of the characteristics computed for 𝒘𝒘𝒔𝒔 do not 
statistically match an emplaced RF-DNA credential.  Without consideration for a possible link 
pairing policy 𝒑𝒑 to define a 𝒘𝒘𝒔𝒔𝑶𝑶 path, an authorized link 𝒍𝒍 also does not exist.  Any RF-DNA 
fingerprint extraction from 𝒘𝒘𝒔𝒔 yields a statistically significant binary result; however the 
fingerprint is not repeatable from an authorized source, and therefore Property-3 is not satisfied 
since there is no evidence that a trusted waveform 𝒘𝒘𝒘𝒘 originated from 𝒘𝒘𝒔𝒔.  Finally, upon 
inspection of the full RF-DNA complement memory space of 𝑶𝑶, if there is no evidence or 
discovery of emplaced RF-DNA credentials in the memory of 𝑶𝑶, then the authenticator lacks 
any known RF-DNA credential of 𝒘𝒘𝒔𝒔 nor any 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 to authenticate the waveform origin 
integrity of source 𝒘𝒘𝒔𝒔.   ∎  

The following informal result emerges from the above argument.  A controlled physical 
circuit which consistently generates repeatable distinct waveform states can be quantified as 
having statistically unique self-evident features.  Such uniqueness derived from a physical 
occurrence, lends itself to expressive logical interpretations.  When correlated with other 
environmental cues, logical interpretations based on physically-determined uniqueness may be 
useful in security augmentation ventures.   
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ANNEX T: FSK/FM Transmit Documentation and Guide 
Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant:  Paul Dunaway 
File Location (PC-4): 
C:\Users\TLewis1\Desktop\Paul \FSK Tx – V9.5 - Pulse and Replay 
C:\Users\TLewis1\Desktop\Paul\DEPENDENCIES\Extract Number of Pulses from Raw Data  
C:\Users\TLewis1\Desktop\Paul\Inputs 
How to Use 

1) Open FSK Tx – V9.5 – Pulse and Replay.vi by double-clicking the FSK Tx desktop 
shortcut; this will open the Front Panel of the VI. 

2) Under “USRP Tx & Filter Settings”, ensure the following default values are correct: 
A. Tx Device: 192.168.10.2 
B. Tx Antenna: TX1 (if the antenna or wire is on TX1 of the USRP device) 
C. Tx Filter: None 
D. Alpha: 0.50 
E. Filter Length: 4 
F. Symbol phase continuity: continuous 

 
Figure 57. USRP Tx& Filter Settings 

3) There are 2 main transmission options: 
A. OPTION 1 (Figure 2.a): Transmit a Message (M) 

i. Under “Message (M) Settings”, select the desired method of creating 
message (m) from one of the following options in the radio button menu: 

1. pRNG – Randomly generated message 
2. Manual Input – Manually entered message 
3. Input File – Binary stream from file 

a. Select 3 binary text files (txt file containing only 1’s and 
0’s): 
1) Preamble – a text file for the preamble of the message 
2) Payload – the actual binary message or command 
3) Postamble – a text file for the postamble of the 

message 
ii. NOTE: The Green LED’s only verify which method was selected 

B. OPTION 2 (Figure 2.b): Transmit a previously recorded transmission 
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i. Under “Transmit a Recorded Transmission”, click ‘Replay a Recorded 
Transmission’ 

ii. Enter the file path of the raw data file under Raw Data File Path 
4) In the bottom row of the Dial Block (Figure 2.c): 

A. Set FSK M-ary to 2 (Default) 
B. Set Samples/Symbol to 16 (Default) 
C. Select a Time Delay (≥2s) 
D. Select the Number of Pulses to be transmitted (>0) 

5) To run the VI: In the menu bar, select “Operate -> Run” 
6) To cease transmitting and stop the VI: In the menu bar, select “Operate -> Stop” 

NOTE: All parameters are dynamic, meaning any parameter can be changed during 
transmission without needing to restart the program. 
A. In the upper left-hand corner of the front panel is the USRP Tx & Filter Settings group, 

containing: 
a. Tx Device (192.168.10.2) – This is the IP of the USRP transmitter 
b. Tx Antenna (TX1) – This is the antenna port being used  
c. TX Filter (“none”) – This allows the operator to choose what transmission filter 

to use 
d. Alpha (0.50) – Used to compute the calculate deviation  
e. Filter Length (4) – This allows the operator to set the pulse-shaping filter’s 

length, in symbols 
Symbol phase continuity (“continuous”) – This specifies the symbols’ phase transitions 
as continuous or discontinuous 
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Figure 58a. (TOP):  Message (M) Settings 

Figure 58b. (MIDDLE): Transmit a Recorder Transmission 

Figure 58c. (BOTTOM): Dial Block (default values displayed) 

 
Parameter Defaults and Descriptions  

B. To the right of the USRP Tx & Filter Settings widget is the Message (M) widget, 
containing: 

a. A Radio-Button Menu (Use pRNG) – This allows the operator to choose how the 
message (m) is created: 

• Use pRNG – This option will generate message (m) using a 
Pseudorandom Number Generator 

• Use Input Bitstream – This option will use the 8-bit manual input, Manual 
Input 

• Use Input File – This option will concatenate the bits in 3 binary text files 
(the preamble, payload, and postamble) to construct message (m) 

b. Manual Input – This allows the operator to manually input text (alphanumeric); 
converts from ASCII to Binary 

c. File Path – The operator must select a file 
C. Below the USRP Tx & Filter Settings widget is the Transmit a Recorded 

Transmission widget, containing: 
a. Replay a Recorded Transmission (Off) – Allows the operator to transmit a raw 

data file 
b. Replay But Don’t Tx (Off) – Allows the operator to visualize a transmission 

without actually transmitting anything 
c. Raw Data File Path – The file path to the raw data file 

D. Dial Block: 
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a. Tx IQ Rate (200k) – Allows the operator to change the IQ rate (samples per 
second) 

b. Carrier Frequency (450M) – Specifies the frequency of the transmission 
c. Gain (0) – Specifies the aggregated gain in dB 
d. Bandwidth (10M) – Specifies the bandwidth of the transmission 
e. Modulation Index (0.3) – Utilized to compute the calculated deviation 
f. Symbol Rate (2M) – Utilized to compute the calculated deviation 
g. PN Sequence Order (9) – Utilized to compute the pseudorandom number 

generated message (m) 
h. FSK Symbols (1500) – Utilized to compute the pseudorandom number generated 

message (m) 
i. FSK M-ary (2) – Specifies the number of frequency deviations 
j. Samples/Symbol (16) – Specifies the number of samples per symbol 
k. Delay (2) – Allows the operator to specify a time delay between pulses (>2 sec) 
l. Number of Pulses (10) – Allows the operator to specify the number of pulses to 

be transmitted 
• NOTE: a pulse is a single transmission of message (m), from beginning to 

end, without repeating or adding filler bits to meet a bit-length 
requirement 

E. Deviation Panel: 
a. FSK Deviation (Hz) (100) – Specifies the FSK frequency deviation 
b. Use Calculated Deviation (Off) – this toggle button allows the operator to 

choose whether to utilize the calculated deviation or to utilize the FSK deviation 
(Hz) input 

F. FM Panel: 
a. FM Deviation (450) – Specifies the FM frequency deviation 
b. FM (Off)- this toggle button allows the operator to choose whether to transmit 

only FSK (off) or FSK on FM (on) 

Visual Aid Descriptions 
A. Graphs: 

a. I/Q Graph – Portrays the FSK constellation  
b. Tx Signal – Depicts the waveform power spectrum 
c. Tx Pulse – Depicts the pulse being transmitted 

B. Indicators: 
a. Number of Pulses (USRP Tx Filter Settings) – Indicates the number of pulses 

already transmitted 
b. Number of Samples (Transmit a Recorded Transmission) – Indicates how many 

samples are being transmitted (based on the rows of data in the Raw Data file) 
C. Common Errors: 

a. File I/O: File Not Found – Check if all File Path Entry boxes have valid file paths 
b. File Type: 

i. Raw Data File Path must be a tdms file 
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• i.e.: 
“C:\Users\TLewis2\Desktop\Evan\Databases\D0\NewRawData.td
ms” 

ii. File Path (under Message (M) Settings) must be a text document 
containing only 1’s and 0’s 

• i.e.: “C:\Users\TLewis2\Desktop\Paul\Inputs\m_01.txt” 
c. No Devices Found: Check USRP-2922 unit is powered on and connected to the 

PC via an Ethernet cable 
D. Bit Streams: 

a. Tx’d bit-stream: the bit stream being transmitted 
b. Rx’d bit-stream: what the receiver should/will receive 
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ANNEX U: FSK/FM Receiver Documentation and Guide 
 
Research Lead:  MAJ Tyrone Lewis 
Intern/Research Assistant: Evan Kain  
Description: 
 

In order to properly use this vi, the following guide is provided to give a high level 
overview of each section on the front panel. This guide assumes you have had some experience 
with NI LabVIEW and that you understand the basic principles of signal processing. It will 
walk through each tab of the vi’s front panel and describe the layout as well as the default values 
and functionality of each control and indicator. 

Front Panel Description and Pictures:  The front panel consists of four tabs 0 - Setup, 
1 – Main, 2 – Stats, and 3 – File Paths. The 0 - Setup tab shown below contains the setup 
information for different devices and operation mode controls. It is used to determine the high 
level function of the vi. It is intended to give the user more control over the function of the vi. 
Use this tab when changing the high level function of the vi such as continuous collection, 
comparison, stats generation, etc. Pay close attention to which features are enabled as these will 
drastically change what the program does. 

 

 
Figure 59. 0 - Setup Tab 

The 1 - Main tab shown on the following page contains the controls and indicators for 
the receiving feature of the VI. The purpose of this tab is to set the receiver parameters. It will 
also provide indications of the real values of these parameters as well as the data output from 
the receiver. This tab is intended to provide the user more control of the receiver as well as give 
a thorough indication of how the receiver is actually functioning. This tab should be used when 
changing the receiver settings and during an active collection. Please use this to verify that the  
receiver settings are correct with the graphs on the right side of the panel. 
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Figure 60. 1 - Main Tab

The Stats Tab shown below contains the controls and indicators for statistical comparisons as well 
as information for stats generation and database generation. It provides several options for various 
comparisons and recommendations and is intended to give the operator a thorough examination of whether 
an incoming pulse set adequately compares to a known set of pulses. Use this tab after a collection is done 
and you plan on comparing two or more different sets of pulses. Also use this tab at the start of a new 
collection to verify that the correct database information is entered. 

 

 
Figure 61. 2-Stats Tab 
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 The 3 - File Paths tab shown below contains the file path inputs for the databases for comparison 
or generation as well as the file paths to which output data will be immediately saved. This vi provides the 
ability to direct almost every file generated to a specific path. This functionality is intended to provide more 
flexibility to the operator and help organize the saved data. Use this tab at the beginning of each collection 
to set the file paths you would like to change. 

 

 
Figure 62. 3 - File Paths Tab 

Setup Controls and Parameter Defaults:  
The following section reviews the parameter default values and controls. Setup Parameter Value 

Tables: The setup parameter value tables shown below, offer default settings for the proper triggering and 
capture of pulses for a given transmission device and demodulation type.  

 

 
Figure 63. Setup Parameter Value Tables 

a. The tables should be filled with “NA” if the parameter does not apply to the particular 
demodulation type and a question mark if unknown. 

b. The values can be changed by hand, and they should be used to modify settings on the 1 - 
Main tab. 

2. Operation Control Buttons: Light green when pressed (i.e. logical high), dark green when not 
pressed.  
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Figure 64. Transceiver’s operational control buttons 

 Settings shown are for a collection that generates a database and computes stats without doing 
anything else. 

a. Continuous RX: When pressed, the continuous RX button allows for the program to receive 
pulses indefinitely. 

b. Filter: When pressed, applies a fourth order band pass, Butterworth filter to the waveform 
before triggering.  

c. Generate Database: When pressed, generates a database folder at the defined folder path 
which contains a profile description, the raw data files, and the statistics files for a given 
collection. 

d. Append to Existing Database: When pressed, appends any newly collected pulses to the 
database at the defined folder path.  
 

i. WARNING: Do not use in conjunction with fix stats as this causes a multitude of 
errors and could delete data from the existing database. 
 

e. Fix Stats: When pressed, bypasses the receiver and regenerates statistics and database files. 
i. Note: This feature requires an unorganized raw data file to be saved in an existing 

database folder.  
1. This unorganized raw data format will be defined later in this file and was 

defined in the project overview documentation. 
 

ii. WARNING: Do not use in conjunction with append to existing database as this 
causes a multitude of errors and could delete data from the existing database. 
 

f. Compute Stats: When pressed, computes statistics for all captured pulses. 
i. Note: Must be pressed when doing a statistical comparison or generating a database. 

g. Offline Testing: When pressed, bypasses all receiving, statistical generation, and database 
generation functions. Executes a gold standard diagnostic test and gold standard generation.  
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i. Non-functional as of version 2.7. 
ii. The gold standard is discussed in the project overview documentation. 

h. Do Comparison: Compares incoming pulses against a set of files from an existing database. 
i. Note: The database files are chosen on the 3 - File Paths tab. 

i. Note: All buttons on this tab switch when pressed. 
3. Default settings for the parameter value tables can be used for collection settings.  
4. The default parameters for the setup controls are for a collection in which new data is collected and a 

new database is generated with statistics. No other features are enabled by default. 

Setup Controls and Parameter How To: This section details the controls of tab 1 – Main Tab. 
1. Enable desired features. 

a. Click on the operation control buttons to enable or disable them as necessary.  
b. Each collection will have different features enabled depending on what features are desired. 

See the setup controls and parameter defaults for descriptions. 
2. After collecting on an undocumented device type, create a new parameter value table. 
3. After collecting with an undocumented demodulation type, put new values in the parameter value 

table. 

RX Controls and Default Values:  
The following section reviews the RX controls and their default values. The top label indicates 

functions, the knob provides dynamic control tuning, and boxes group similar controls. 

 
Figure 65. RX Controls 

1. FSK Deviation [Hz]: Sets the FSK deviation in Hz. 
a. For use with FSK demodulation.  
b. The default value is 1 for development. 
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2. FM Deviation [Hz]: Sets the FM deviation in Hz. 
a. For use with FM demodulation. 
b. The default value is 450M for development. 

3. M-FSK: Sets the M value for M-ary FSK modulation.  
a. For use with FSK demodulation. 
b. The default value is 2 as this is the default transmission M-ary FSK. 

4. IQ [Samples/sec]: Sets the IQ sampling rate in samples per second. 
a. The default value is500kM for development. 

5. Bandwidth: Sets the frequency bandwidth for the collection. 
a. The default value is 10k for development. 
b. Note: Also sets the frequency bandwidth for the external filter when applied. 

6. Carrier Freq [Hz]: Sets the frequency of the collecting SDR in Hz. 
a. The default value is 449.9M since the default transmission frequency is 450M. 
b. Note: This value is set to the transmission center frequency with a slight offset for better 

collections. 
7. Gain [dB]: Sets the receiver gain in decibels. 

a. The default value is 18 for development. 
8. Samples/Symbol: Sets the number of received samples per expected symbol. 

a. The default value is 16 for development. 
b. Note: Used for FSK demodulation. 

9. Acq Duration [sec]: Sets the acquire window size.  
a. The default value is 750ms because the longest pulse we have received up to this point is less 

than 400ms which falls easily in this acquire window. 
b. Note: A longer acquire duration will capture more data per acquire window and help catch a 

full pulse. However, a longer acquire duration will use more memory and may cause the 
program to crash at high IQ rates. 

c. Note: A shorter acquire duration will update faster and may alleviate memory issues. 
However, the shorter duration may not capture a full pulse.  

10. Pulses to Collect: Sets the maximum number of pulses the receiver collects before it stops collecting. 
a. The default value is 3 for development. 
b. Note: This parameter is ignored when continuous RX is enabled on the 0 - Setup tab. 

11. # Features: Sets the number of features for which statistics are generated.  
a. The default value is 8 since this is the original number of features calculated. 
b. Note: Ignored when generate stats, do comparison, and generate database are all disabled on 

the 0 - Setup tab. 
12. # Sub-regions: Sets the number of sub-regions for which statistics are generated.  

a. The default value is 10 for development. 
b. Note: Ignored when generate stats, do comparison, and generate database are all disabled on 

the 0 - Setup tab. 
13. Samples/Pulse: Sets the number of samples captured in each pulse. 

a. The default value is 177.5k for development. 
b. Note: This conditions the maximum length of the triggered pulse. All samples after this value 

will be ignored until the next acquire window is processed.  
14. Trigger Threshold: Sets the signal magnitude trigger threshold. 

a. The default value is .05 for development. 
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b. Note: When a signal magnitude’s response is detected within the acquire window’s threshold, 
a pulse of length X samples is measured using the pre-specified RF-Measurement(s) for a 
given ROI. 
 

c. WARNING: If the signal to noise ratio is low, this value may need to be set very carefully to 
avoid improper triggering. 
 

15. NZ Pre-Pulse: Sets the number of samples before a triggered pulse that will be captured. 
a. The default value is 1.5k for development. 

 
b. WARNING: A higher number for NZ Pre-Pulse will store more samples in a buffer and 

could cause crashes at high IQ rates due to memory issues. 
 

16. % From Beginning: Used to condition the pulse save length. 
a. The triggered pulse does not save if it falls below the save threshold within 

100+(% 𝐹𝐹𝑃𝑃𝑉𝑉𝑃𝑃 𝐵𝐵𝑉𝑉𝐵𝐵𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝐵𝐵)
100

× (𝑒𝑒𝑍𝑍 𝑃𝑃𝑟𝑟𝑒𝑒 𝑃𝑃𝑝𝑝𝑝𝑝𝑟𝑟𝑒𝑒) samples of the triggered pulse.  
b. The default value is 18 for development. 

 
c. WARNING: Setting this value too empirically low will allow pulses of insufficient length to 

be saved. 
d. WARNING: Setting this value too empirically high will cause pulses of sufficient length to 

be thrown away. 
e. WARNING: If % 𝐹𝐹𝑟𝑟𝑀𝑀𝑚𝑚 𝐵𝐵𝑒𝑒𝑏𝑏𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑏𝑏 +  % 𝐹𝐹𝑟𝑟𝑀𝑀𝑚𝑚 𝐵𝐵𝑒𝑒𝑏𝑏𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑏𝑏 ≥ 100, no triggered pulses 

will be saved. 
f. WARNING: If % 𝐹𝐹𝑟𝑟𝑀𝑀𝑚𝑚 𝐵𝐵𝑒𝑒𝑏𝑏𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑏𝑏 +  % 𝐹𝐹𝑟𝑟𝑀𝑀𝑚𝑚 𝐵𝐵𝑒𝑒𝑏𝑏𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑏𝑏 ≥ 100, all triggered pulses 

will be saved. 
 

17. % From End: Used to condition the pulse save length. 
a. The triggered pulse does not save if it falls below the save threshold within 

100−(% 𝐹𝐹𝑃𝑃𝑉𝑉𝑃𝑃 𝑀𝑀𝑛𝑛𝑑𝑑)
100

× (𝑆𝑆𝑎𝑎𝑚𝑚𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟/𝑃𝑃𝑝𝑝𝑝𝑝𝑟𝑟𝑒𝑒) samples of the end of the pulse.  
b. The default value is 18 for development. 

 
c. WARNING: Setting this value too empirically high will allow pulses of insufficient length to 

be saved. 
d. WARNING: Setting this value too empirically low will cause pulses of sufficient length to be 

thrown away. 
e. WARNING: If % 𝐹𝐹𝑟𝑟𝑀𝑀𝑚𝑚 𝐵𝐵𝑒𝑒𝑏𝑏𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑏𝑏 +  % 𝐹𝐹𝑟𝑟𝑀𝑀𝑚𝑚 𝐵𝐵𝑒𝑒𝑏𝑏𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑏𝑏 ≥ 100, no triggered pulses 

will be saved. 
f. WARNING: If % 𝐹𝐹𝑟𝑟𝑀𝑀𝑚𝑚 𝐵𝐵𝑒𝑒𝑏𝑏𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑏𝑏 +  % 𝐹𝐹𝑟𝑟𝑀𝑀𝑚𝑚 𝐵𝐵𝑒𝑒𝑏𝑏𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑏𝑏 ≥ 100, all triggered pulses 

will be saved. 
 

18. Filter Center Frequency: Sets the center frequency of the external, bandpass, fourth order, 
Butterworth filter. 

a. The default value is 100k for development. 
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b. Note: The pass band of the Butterworth filter is from 𝐹𝐹𝑖𝑖𝑙𝑙𝑡𝑡𝑉𝑉𝑃𝑃 𝐶𝐶𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃 𝐹𝐹𝑃𝑃𝑉𝑉𝐹𝐹𝑢𝑢𝑉𝑉𝑛𝑛𝑐𝑐𝑦𝑦−𝐵𝐵𝑎𝑎𝑛𝑛𝑑𝑑𝑤𝑤𝑖𝑖𝑑𝑑𝑡𝑡ℎ
2

 to 
𝐹𝐹𝑖𝑖𝑙𝑙𝑡𝑡𝑉𝑉𝑃𝑃 𝐶𝐶𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃 𝐹𝐹𝑃𝑃𝑉𝑉𝐹𝐹𝑢𝑢𝑉𝑉𝑛𝑛𝑐𝑐𝑦𝑦+𝐵𝐵𝑎𝑎𝑛𝑛𝑑𝑑𝑤𝑤𝑖𝑖𝑑𝑑𝑡𝑡ℎ

2
 Hz. 

19. The “Reconfigure” and “STOP AND SAVE DATA” buttons shown on the right of figure 7 are also 
very important to correct operation.  

a. The Reconfigure button should be pressed any time a change is made to the controls during 
an active receiving session. The changes will not take effect until Reconfigure is pressed. In 
addition, if the number of pulse that are expected to be received is lower than the total 
number of pulses that were received during the last collection, reconfigure must be pressed to 
reset the pulse count ceiling. If reconfigure is not pressed in this scenario, the program will 
not save any data. 

20. The stop and save data button resets the pulse count, stops the receive session, and saves the raw data 
for further collection. 

RX Controls How To: 
1. FSK Deviation [Hz]: Set the desired FSK deviation in Hz. 

a. Attempt to match this to the transmitter settings. 
2. FM Deviation [Hz]: Set the desired FM deviation in Hz. 

a. Attempt to match this to the transmitter settings. 
3. M-FSK: Set the desired M to match the transmitter.  
4. IQ [Samples/sec]: Sets the IQ sampling rate in samples per second. 

a. Note: Oversample as much as possible as your signal can always be resampled at a lower 
rate. 

5. Bandwidth: Set the frequency bandwidth for the collection in Hz. 
6. Carrier Freq [Hz]: Sets the frequency of the collecting SDR in Hz. 

a. Set slightly lower than the transmitted center frequency in order to collect the clearest signal. 
7. Gain [dB]: Set the receiver gain in decibels. 

a. Note: Amplifies noise as well as the received signal.  
i. Turn gain up on the transmitter end if the SNR is a problem. 

8. Samples/Symbol: Set the number of received samples per expected symbol. 
a. Attempt to match this to the transmitter settings. 

9. Acq Duration [sec]: Set this to be at least twice as long as the expected pulse length in seconds. 
10. Pulses to Collect: Set to the number of pulses you want to save. 
11. # Features: Sets to the number of features you want to generate statistics for.  

a. Note: The calculated features are in a set order and it is currently impossible to generate them 
out of order. 

i. i.e. You can’t generate some higher numbered features without generating the lower 
numbered ones. 

12. # Sub-regions: Set the number of sub-regions for which statistics are generated.  
a. Empirically determined for best results. 

13. Go to the 0 - Setup tab and turn on continuous RX. 
14. If the number of pulses saved is incorrect, or if the present value of pulses to collect is less than the 

value of pulses to collect from the previous collection, click the reconfigure button. 
15. Press Run on the VI. 
16. Trigger Threshold: Set the signal magnitude trigger threshold  

a. Set as low as possible without triggering a pulse off of noise.  
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17. Begin transmitting pulses with the transmitter.  
18. Raise the trigger threshold if the receiver is triggering but is capturing data that does not belong to 

your transmission.  
19. If the receiver does not trigger on any pulses, consider turning the gain up on the transmitter. 
20. NZ Pre-Pulse: Set to a high number so that you capture the entire front end of the pulse.  

a. Reduce until you capture as few noise samples as possible while still capturing the full front 
end of the pulse.  

21. Samples/Pulse: Set to a high number so that you capture the entire back end of the pulse. 
a. Reduce until you capture as few noise samples as possible while still capturing the full front 

end of the pulse.  
22. % From Beginning: Set to 0 and observe if the pulse saved LED lights up.  

a. Gradually increase until the pulse saved LED no longer lights up for pulses with insufficient 
front end characteristics. 

i. i.e. If the pulse is too short or has strange downward spikes, increase this value until 
similar pulses no longer save.  

23. % From End: Set to 0 and observe if the pulse saved LED lights up.  
a. Gradually increase until the pulse saved LED no longer lights up for pulses with insufficient 

front end characteristics but does light up for pulses with desirable characteristics. 
i. i.e. If the pulse is too short or has strange downward spikes, increase this value until 

similar pulses no longer save.  
24. Make sure that the filter button is turned off on the 0 - Setup tab. 
25. Filter Center Frequency: Set this to the frequency of the highest spike on the PSD. 
26. Turn the filter button on if demodulating or operating in a noisy environment. 

Hardware and Processing Controls Description and Defaults: This section will review the physical and 
processing controls.  

 
Figure 66. Physical and Processing Controls 

1. USRP IP Address: Set to the IP address of the USRP 2922 used for recording.  
a. The default is 192.168.10.2 for each USRP 2922. 

2. Reference Frequency Source: Set to the desired frequency reference source.  
a. The default is internal. 

3. Timebase Clock Source: Set to the desired clock source. 
a. The default is internal. 

4. Active Antenna: Set to the desired antenna for receiving. 
a. The default is RX1. 

5. Symbol Phase Continuity: Set to the expected symbol phase continuity. 
a. The default is continuous. 

6. Demod Type: Set to the desired demodulation type. 
a. The default is none. 

Hardware and Processing Controls How To: 
1. Verify that the USRP IP Address is at the default value of 192.168.10.2. 
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a. If the default value is unavailable, click refresh from the drop down menu and select the 
default value.  

i. Alternatively, go to the USRP-utils program found at C:\Program Files (x86)\National 
Instruments\NI-USRP\utilities 

b. If the default value does not work, you most likely have a connection issue. 
i. Please contact National Instruments if this problem arises.  

2. Set the reference frequency source to internal unless you have connected the SDR to an external 
frequency source in which case you should select the appropriate external connection. 

3. Set the reference timebase source to internal unless you have connected the SDR to an external 
timing source in which case you should select the appropriate external connection. 

4. Set the active antenna to the antenna you intend to receive from. 

WARNING: Choosing the wrong antenna may still allow you to collect data, but the data will be 
inconsistent with other collections and will not be usable for comparisons.  

5. Symbol Phase Continuity: Match this parameter to that of the transmitter. 
6. Demod Type: Set this to the desired demodulation type in order to retrieve the logical bits 

transmitted. 
a. Note: Does not return correct bit stream as of version 2.7. 
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RX Indicators and Graphs Descriptions: 

 
Figure 67. RX Graphs 

 
Figure 68. RX Indicators 

1. Acquired Signal: Plots the data captured during the acquire window set by the acq duration control. 
a. Displays the magnitude of the data by default. 
b. Can be modified to display just I data or Q data. 

i. To enable other data displays, right click on the acquired signal graph, and select 
visible items. 

1. Check the plot legend box. 
a. Enable desired displays using this box.  
b. If the box does not display checkboxes next to each plot option, right 

click the box and go to visible items and enable plot legend checkbox. 
2. Most Recent Pulse: Plots the most recently triggered pulse.  

a. Displays the pulse magnitude by default. 
i. To enable other data displays, right click on the most recent pulse graph, and select 

visible items. 
1. Check the plot legend box. 

a. Enable desired displays using this box.  
b. If the box does not display checkboxes next to each plot option, right 

click the box and go to visible items and enable plot legend checkbox. 
3. RX Signal: Plots the power spectral density of the acquired signal. 

a. Use this graph to verify that the received signal is similar to the transmitted one and that you 
are not receiving any unauthorized transmissions.  

4. IQ Sample Rate [S/sec] (actual): Displays the coerced IQ rate. 
a. Use this indicator to verify that the expected IQ rate does not violate the physical limitations 

of the recording device.  
5. dt: Displays the coerced dt. 
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a. Use this indicator to verify that the expected dt does not violate the physical limitations of the 
recording device.  

6. Carrier Frequency [Hz] (actual): Displays the coerced carrier frequency. 
a. Use this indicator to verify that the expected carrier frequency does not violate the physical 

limitations of the recording device.  
7. Pulses Saved: Indicates the number of pulses saved during the collection. 

a. Use this to verify that the expected number of pulses saved is equal to the actual number of 
pulses saved. 

8. Gain [dB] (actual): Displays the coerced gain. 
a. Use this indicator to verify that the expected gain does not violate the physical limitations of 

the recording device. 
9. Pulse Detection Efficiency: Displays the decimal ratio of pulses saved to pulses triggered.  

a. Use this to estimate how long a collection will take or whether or not you should change the 
constraints on the saved pulse size. 

10. Frame Size [samples]: Displays the size of the acquire window in samples. 
a. Use this to verify the total acquire window size in samples and set your pulse length 

accordingly. 
11. Output Bit Stream: Displays the demodulated bit stream from the received signal.  

a. Note: Disabled when demodulation type is set to “None.” 
b. Note: Does not return the correct bit stream as of version 2.7. 

12. New Pulse Saved: Boolean indicator that flashes green when a pulse is saved. 
a. Use to verify that pulses are saved properly. 

13. New Pulse Triggered: Boolean indicator that flashes green when a pulse is triggered.  
a. Use to verify that pulses are triggered properly.  

Stats and Comparison: The following steps will guide you through the 2 - Stats tab of the front panel. 

 

Figure 69. 2 - Stats Tab 
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Figure 70. RF-Measurement comparisons using LabVIEW’s Math Script 

 
1. Top 3 Performance Features: Display the names and values of the top three performing features for 

the real and imaginary data for the full wave and across all the sub-regions.  
a. Use to determine which features perform the best classifications.  

2. (Debug) Overall Best Match %: Shows the best overall match percentage for a given comparison. 
a.  Use this to determine the acceptance threshold for the recommendation to the operator.  

3. Overall Recommendation TF: Boolean indicator that displays whether a given pulse meets the 
acceptance threshold standards for a given comparison.  

a. Use to determine whether a given pulse should be accepted as a valid command. 
4. dT: Sets the acceptance threshold for the operator recommendation.  

a. Use to determine the rigor of the comparisons.  
5. Percents to use for determining acceptance? (Both, Full Wave Only, or Subregion Only): Use to 

control which statistics will be used to determine whether a pulse is deemed similar enough during 
comparison.  

a. Options allow for the use of only full wave statistics, only subregion statistics, or the 
arithmetic mean of both. 

6. (Debug) Top 3 Only Best Match Percentage: Shows the best overall match percentage for each of the 
top three compared statistics as well as the arithmetic mean of their best match percentages. 

a. Use this to determine the effectiveness of each of the top 3 statistics individually.  
7. Recommendation Boolean t3: Displays whether a pulse would be recommended as similar for each 

of the top 3 statistics as well as for their arithmetic mean.  
a. Use this to determine the effectiveness of each of the top 3 statistics. 

8. Recommendation to Operator Top 3 Only: Displays whether a pulse would be recommended as 
similar for each of the top 3 statistics as well as for their arithmetic mean.  

a. Use this to determine the effectiveness of each of the top 3 statistics. 
9. dTt3: Sets an acceptance threshold for each of the top three statistics for comparison.  
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a. Use this to determine how a network would accept or reject a pulse as similar based off of 
each of the top three statistics.  

10. Sub-regions List: List of the numerical sub-regions for which statistics are computed. 
a. Note: Saved in the database profile description. 

11. Times of Each Sample (before tick count): Displays the times at the start of each subregion for 
which statistics are calculated. 

12. Use which Statistics for Comparing? (by index): Used to select which statistics will be used for 
comparison by name. 

a. Select which statistics to use by cycling through the options. 
13. (Debug) (DB Real Wave) Column Index of Wave: Determines which wave dataset will be plotted in 

the Read and Graph Waveform Values against Subregion Statistics vi. 
a. The options are the following: 

i. 0=Time 
ii. 1=Real 

iii. 2=Imaginary 
14. (Debug) (DB Imaginary  Wave) Column Index of Wave: Determines which wave dataset will be 

plotted in the Read and Graph Waveform Values against Subregion Statistics vi. 
a. The options are the following: 

i. 0=Time 
ii. 1=Real 

iii. 2=Imaginary 
15. (Incoming Real Wave) Column Index of Wave: Determines which wave dataset will be plotted in 

the Read and Graph Waveform Values against Subregion Statistics vi. 
a. The options are the following: 

i. 0=Time 
ii. 1=Real 

iii. 2=Imaginary 
16. (Incoming Imaginary Wave) Column Index of Wave: Determines which wave dataset will be plotted 

in the Read and Graph Waveform Values against Subregion Statistics vi. 
a. The options are the following: 

i. 0=Time 
ii. 1=Real 

iii. 2=Imaginary 
17. (DB and Incoming) Graph which sub-regions? (duplicates are ignored): Graphs the sub-regions by 

index number in the Compare DB and Inc Waveform Using Real and Imag Waveform Values vs. 
Subregion Stats vi. 

a. The numbers are mapped to statistics names following the table immediately to the right of 
the array. 

18. (Debug Real) Average Percentages per Subregion: Displays the arithmetic mean of each subregion’s 
calculated statistics for the real incoming waveform. 

a. Use to determine which sub-regions are best for classifications. 
19. (Debug Imag) Average Percentages per Subregion: Displays the arithmetic mean of each subregion’s 

calculated statistics for the imaginary incoming waveform. 
a. Use to determine which sub-regions are best for classifications. 

20. File Path of Best Matching Waveform (Full Wave): Displays the file path for the raw data file of the 
most similar database waveform for a given incoming waveform based off of full wave comparisons. 
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a. Use this to determine which device is most similar to the incoming waveform’s transmission 
device.  

21. File Path of Best Matching Waveform (Sub-regions): Displays the file path for the raw data file of 
the most similar database waveform for a given incoming waveform based off of subregion 
comparisons. 

a. Use this to determine which device is most similar to the incoming waveform’s transmission 
device.  

22. Transmitter ID: Used to store the transmitter ID in the database profile description. 
a. Type in the Transmitter ID. 

23. (DB and Incoming) Graph which statistic?: Determines which statistics will be graphed in the Read 
and Graph Waveform Values against Subregion Statistics vi. 

a. Use to visualize the effectiveness of each statistic. 
24. Receiver ID: Used to record the receiver ID in the database profile description. 

a. Type in the receiver ID. 
25. DB Pulses to compare: Set the number of pulses from the database that will be used for comparisons. 

a. Note: Should not be larger than the actual number of pulses stored in a database. 
26. Environmental Conditions: Used to record the environmental conditions in the database profile 

description: 
a. Type in the environmental conditions. 

27. Statistical Features List: Used to record the names of the statistical features for which stats were 
generated in the database profile description. 

a. Type in the feature names. 

File Paths: This section reviews the file paths tab of the front panel.  

 
Figure 71. File Paths Tab 

1. File Paths of Incoming Files: Array containing the file paths to which each incoming wave file will 
be saved.  

a. Input in the following order from the top of the array to the bottom of the array: 
i. Unorganized raw data (tdms) 

ii. Real full stats (excel) 
iii. Imaginary full stats (excel) 
iv. Real unsorted subregion stats (excel) 
v. Imaginary unsorted subregion stats (excel) 

vi. Real sorted subregion stats (excel) 
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vii. Imaginary sorted subregion stats (excel) 
b. To change, click on the small yellow folder button and choose a new file path. 

2. (DB Both Waves) File Path of Waveform File (TDMS): File path of organized raw data file from 
existing database to be used for comparison. 

a. TDMS file format. 
b. To change, click on the small yellow folder button and choose a new file path. 

3. (Real Full DB) File Path (Excel): File path of real full stats file from existing database to be used for 
comparison. 

a. .xlsx file format. 
b. To change, click on the small yellow folder button and choose a new file path. 

4. (Imag Full DB) File Path (Excel): File path of imaginary full stats file from existing database to be 
used for comparison. 

a. .xlsx file format. 
b. To change, click on the small yellow folder button and choose a new file path. 

5. (Real Subregion DB) File Path (Excel): File path of real subregion stats file from existing database to 
be used for comparison. 

a. .xlsx file format. 
b. To change, click on small yellow folder button and choose a new file path. 

6. (Imag Subregion DB) File Path (Excel): File path of imaginary subregion stats file from existing 
database to be used for comparison. 

a. .xlsx file format. 
b. To change, click on the small yellow folder button and choose a new file path. 

7. New Database Folder Path: Folder path of new database to be created. 
a. Creates or overwrites database at this location when enabled. 
b. Appends to database at this location when enabled. 
c. Reads unorganized raw data file from this location when fix stats is enabled. 

8. File Paths of Database Files: 2D array of file paths for database comparisons. 
a. Each row of the array is used to specify a different device. 
b. Within each row, the database files must be selected in the following order from left to right: 

i. Organized raw data (tdms) 
ii. Real full stats (excel) 

iii. Imaginary full stats (excel) 
iv. Real sorted subregion stats (excel) 
v. Imaginary sorted subregion stats (excel) 

ANNEX V: Generating Messages for Invariant Transmissions 
 
Research Lead:  Maj. T. Lewis  
Intern/Research Assistant: Paul Dunaway 
 
Requirements: 

- Python 2.7 Installed 
- Windows 7 or later 
- To edit the program, Python 2.7 IDLE is recommended 

Instructions: 
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1) In File Explorer, navigate to “C:\Users\TLewis2\Desktop\Paul\” 
2) Double click “GenerateMFiles.py” to run the script 
3) Once the script has finished, a new File Explorer window will appear at the location of the saved 

message files  

Files Created: 
1) “m_01.txt” – 1500 characters, repeated ‘0101’ pattern 
2) “m_0011.txt” – 1500 characters, repeated ‘0011’ pattern 
3) “m_all_ones.txt” – 1500 1’s (ones) 
4) “m_all_zeros.txt” – 1500 0’s (zeros) 
5) “m_random1.txt” – 1500 characters, random number of 0’s and 1’s, scattered 
6) “m_random2.txt” – 1500 characters, random number of 0’s and 1’s, scattered, just another RNG 

algorithm 
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ANNEX W: Generating Trusted Waveform States 𝒘𝒘𝒘𝒘 

A simple analogue FM circuit modulates a baseband information signal (𝒘𝒘𝒊𝒊) onto a fixed sinusoidal 
carrier wave (𝒄𝒄𝑶𝑶) and transmits a modulated waveforms 𝑤𝑤𝑖𝑖 as output. A subset of authorized baseband 
signals are transmitted through a fixed state modulation circuit, producing a trusted complex waveform 
state as output (𝑤𝑤𝑠𝑠). Where 𝒘𝒘𝒘𝒘 is a repeatable modulated waveform state generated by a fixed transmission 
circuit 𝑐𝑐(𝑡𝑡). Let 𝑟𝑟𝑠𝑠(𝑡𝑡) represent the trusted subset of input baseband signals into a sinusoidal FM modulator 
as described by Stewart et al [85]. A single baseband input analog signal with an amplitude 𝑇𝑇𝑖𝑖 and a 
frequency 𝑓𝑓𝑖𝑖 can be expressed as;  

𝑟𝑟𝑖𝑖  (𝑡𝑡) = 𝑇𝑇𝑖𝑖 𝑐𝑐𝑀𝑀𝑟𝑟(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡) = 𝑇𝑇𝑖𝑖 𝑐𝑐𝑀𝑀𝑟𝑟(𝜔𝜔𝑖𝑖𝑡𝑡)                                                                    (1)            

Where 𝜔𝜔𝑖𝑖 = 2𝜋𝜋𝑓𝑓𝑖𝑖.  
When there is no present input baseband signal, the FM modulated carrier output of a single 

component with amplitude 𝑇𝑇0 and a frequency 𝑓𝑓0 takes the form;  

𝑐𝑐 (𝑡𝑡) = 𝑇𝑇0 𝑐𝑐𝑀𝑀𝑟𝑟�2𝜋𝜋𝑓𝑓0𝑡𝑡 + 𝜃𝜃�(𝑡𝑡) �                                                                                           (2) 

Summing the product of the input baseband signal and a modulation constant 𝑘𝑘0 into an FM 
modulation transmitter, the instantaneous phase (IP) of the generated FM waveform output is determined 
by: 

𝜃𝜃�(𝑡𝑡) = 2𝜋𝜋𝐾𝐾𝑓𝑓𝑃𝑃 ∗� 𝑟𝑟𝑖𝑖(𝑡𝑡)
𝑡𝑡

−∞
                                                                                        (3) 

Where 𝐾𝐾 is the gain. As the baseband signal arrives at the circuit for integration, a frequency 
deviation occurs as sinusoidal terms on either side of the carrier frequency. This deviation is known as the 
modulation index and represented by the symbol (𝐻𝐻). As a present baseband signal is modulated onto 𝑐𝑐(𝑡𝑡) 
through a fixed FM circuit, the phase (effective frequency) of the carrier waveform is modified in response 
to the amplitude variations of 𝑟𝑟𝑖𝑖  (𝑡𝑡) according to 𝐻𝐻. A repeatable FM modulated waveform signal event 
𝑤𝑤𝑖𝑖, using the carrier’s amplitude and frequency given by 𝑇𝑇𝑐𝑐 and 𝑓𝑓𝑐𝑐 becomes;  

𝑤𝑤𝑖𝑖  (𝑡𝑡) = 𝑇𝑇𝑐𝑐 𝑐𝑐𝑀𝑀𝑟𝑟 �𝜔𝜔𝑐𝑐𝑡𝑡 +  𝐻𝐻𝑓𝑓𝑃𝑃  𝑟𝑟𝑅𝑅𝑛𝑛(𝜔𝜔𝑖𝑖𝑡𝑡)�                                                                               (4) 

Given 𝐾𝐾 and 𝑓𝑓𝑐𝑐 the instantaneous frequency (𝐼𝐼𝑓𝑓) is obtained with; 

𝐼𝐼𝑓𝑓  𝑤𝑤𝑖𝑖
= 𝑓𝑓𝑐𝑐 +  𝐾𝐾𝑓𝑓𝑃𝑃𝑟𝑟𝑖𝑖(𝑡𝑡) 𝐻𝐻𝑧𝑧                                                                                            (5) 

1) RF-DNA Fingerprint Process Overview 

The values of the physical waveform event as provided in Eq. (4) contain only the real valued data 
and may not produce statistically significant results that describe the repeatable waveform’s characteristics 
uniquely. Physical phenomenon descriptors [86] of a signal such as its instantaneous Amplitude (𝐼𝐼𝐴𝐴), Phase 
(𝐼𝐼𝜃𝜃) and Frequency (𝐼𝐼𝑓𝑓) are often used to quantify the waveform and is represented here as 𝑇𝑇(𝑛𝑛), 𝜃𝜃(𝑛𝑛) and 
𝑓𝑓(𝑛𝑛) respectively. In order to maintain the uniqueness property of instantaneous features of a modulated 
waveform, the sampled waveform must maintain the real and imaginary (I/Q) features of 𝑤𝑤𝑖𝑖. A Hilbert 
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transform is used to preserve the extracted I/Q feature values of 𝑤𝑤𝑖𝑖 [4] and is used to up convert Eq.(4) and 
becomes complex as: 

𝑤𝑤𝑖𝑖𝐶𝐶(𝑡𝑡) = 𝑤𝑤𝐻𝐻  (𝑡𝑡) +  𝑤𝑤𝑄𝑄(𝑡𝑡)                                                                                          (6) 

These retained I/Q data values are used to compute the 𝐼𝐼𝜃𝜃 features as; 

𝐼𝐼𝜃𝜃 = 𝜃𝜃𝑤𝑤𝑖𝑖𝑖𝑖 (𝑛𝑛) = 𝑡𝑡𝑎𝑎𝑛𝑛−1 �
𝑤𝑤𝑄𝑄(𝑛𝑛)

𝑤𝑤𝐻𝐻(𝑛𝑛)
�                                                                                (7) 

Compared to Eq.(15) the 𝐼𝐼𝑓𝑓 features of a unique complex waveform are computed as; 

𝐼𝐼𝑓𝑓 = 𝑓𝑓𝑖𝑖𝐶𝐶 (𝑛𝑛) =
1

2𝜋𝜋
�
𝑑𝑑𝜃𝜃𝑤𝑤𝑖𝑖 (𝑛𝑛)

𝑑𝑑𝑡𝑡
�  𝐻𝐻𝑧𝑧                                                                                   (8) 

Statistical RF-DNA fingerprints (𝐹𝐹) are features generated based on the statistical behavior of the 
instantaneous response(s) over some fixed regions of interest (ROI) contained within the result of Eq.(6) 
above [4]. An example of an ROI in a standardized modulation scheme such as GFSK signals is the 
preamble region. A preamble is a standardized protocol encoding specification used in a communications 
signaling scheme. 

Using a specified ROI instead of the entire 𝒘𝒘𝒊𝒊, a less computationally expensive 𝐼𝐼𝐴𝐴 can be used to 
determine the signal’s central moments for a population of 𝑛𝑛 samples. The population mean across the 
entire waveform is used to remove collection bias and to account for uncontrolled power variation that may 
occur. This transformation is used to center the waveform and can be applied to a specific ROI for optimal 
feature computation. The centered amplitude (𝑇𝑇𝑐𝑐𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃𝑉𝑉𝑑𝑑) is therefore: 

𝑇𝑇𝑐𝑐𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃𝑉𝑉𝑑𝑑(𝑛𝑛) = 𝑇𝑇(𝑛𝑛) − 𝜇𝜇𝐴𝐴                                                                                     (9) 

𝑓𝑓𝑐𝑐𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃𝑉𝑉𝑑𝑑(𝑛𝑛) = 𝑓𝑓(𝑛𝑛) − 𝜇𝜇𝑓𝑓                                                                                 (10) 

Normalization is performed for each sample of the specified ROI by dividing by the maximum 
magnitude of responses of Eqs. (9) and (10) to yield the first central moments for amplitude and frequency 
as; 

�̅�𝑇𝑐𝑐𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃𝑉𝑉𝑑𝑑(𝑛𝑛) =
𝑇𝑇𝑐𝑐𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃𝑉𝑉𝑑𝑑(𝑛𝑛)
𝑚𝑚𝑎𝑎𝑅𝑅 |𝑇𝑇|                                                                        (11) 

𝑓𝑓�̅�𝑐𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃𝑉𝑉𝑑𝑑(𝑛𝑛) =
𝑓𝑓𝑐𝑐𝑉𝑉𝑛𝑛𝑡𝑡𝑉𝑉𝑃𝑃𝑉𝑉𝑑𝑑(𝑛𝑛)
𝑚𝑚𝑎𝑎𝑅𝑅 |𝑓𝑓|                                                                        (12) 

The trusted circuits states are used to generate the trusted waveform event, collect ROI samples, 
and process the RF-DNA fingerprint credentials for future authentication operations. Adapting Bishop’s 
definition, a security policy (𝑝𝑝𝑖𝑖) is a statement that partitions all possible circuit generating waveform states 
into a two sets of authorized (i.e. secure) and unauthorized (i.e. non-secure) states [62]. Authorized 
waveform transmission events inherently carry the trusted RF-DNA fingerprint markers and are generated 
by 𝑟𝑟 and transmitted to 𝑑𝑑 for origin integrity validation. When 𝑝𝑝𝑖𝑖 specifies a set of authorized circuit 
transmission states, the resulting secure transmitted waveforms constitute the RF-Events and is 
distinguishable from all other possible events Eq.(6). The set of trusted waveform states are defined as; 



www.manaraa.com

 

272 

 

𝒘𝒘𝒘𝒘(𝑡𝑡) ⊆ 𝑤𝑤𝑖𝑖  (𝑡𝑡)  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑅𝑅: 1,2, … 𝑟𝑟, (𝑟𝑟 + 1), (𝑟𝑟 + 2), … (𝑟𝑟 + 𝑅𝑅), 𝑅𝑅                                      (13) 

2) Device Specific Encoding Rule Signature Development for Verification 

 
Device-based Encoding Rule 

Consider a circuit that is capable of transmitting two of four command messages to 𝑅𝑅𝑅𝑅𝑑𝑑 .  Let 𝑟𝑟1 = 
the authorized source circuit state that generates a baseband message to represent command-1 (𝑐𝑐𝑘𝑘=1).  
Using some fixed bit-sequence ID field, we select 𝑇𝑇𝑅𝑅𝑠𝑠 as the front-end circuit encoder for the authorized 
carrier source state to 𝑅𝑅𝑅𝑅𝑑𝑑.  In order to protect against attacks from 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃, 𝑤𝑤𝑠𝑠 is encoded using one and 
only one front end device as the primary circuit state encoding rule.  Let {𝐸𝐸} denote the set of all circuit 
encoding rules of 𝑚𝑚 where 𝑚𝑚 ⊆ 𝑀𝑀 is much greater than 𝑊𝑊.  A device-based circuit source state encoding 
rule of a fixed circuit is denoted by  𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 ∈ 𝐸𝐸 and provides a 1-to-1 mapping from 𝑊𝑊 to 𝑀𝑀.  The range of 
𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠(𝑊𝑊) generated by 𝑇𝑇𝑅𝑅𝑠𝑠 consists of a subset of 𝑀𝑀 that possesses the RF-DNA markings of its original 
source. Prior to transmission, policy 𝑝𝑝𝑖𝑖 is made such that network devices 𝑇𝑇𝑅𝑅𝑠𝑠 and 𝑅𝑅𝑅𝑅𝑑𝑑 agree upon a 𝑤𝑤𝑠𝑠 to 
employ the circuit encoding rule 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠, collect RF measurements of the device encoded state and stores the 
RF-DNA fingerprint signature into the memory of 𝑅𝑅𝑅𝑅𝑑𝑑.   Given 𝑝𝑝𝑖𝑖, 𝑤𝑤𝑠𝑠𝑖𝑖, 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 and 𝑅𝑅𝑅𝑅𝑑𝑑, we define a circuit 
source state’s RF-DNA fingerprint supportive encoding rule for trusted command messages as; 

𝑒𝑒𝑇𝑇𝑇𝑇𝑖𝑖(𝑤𝑤𝑠𝑠 ,𝑚𝑚𝑖𝑖𝑠𝑠) (𝑐𝑐𝑘𝑘)𝑖𝑖𝑠𝑠                                                                                   (14) 

Where 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 is the sth transmission device used as the circuit encoding rule, 𝑤𝑤𝑠𝑠 is the device’s sth 
circuit transmission state.  The modulated message 𝑚𝑚𝑖𝑖𝑠𝑠 is the ith circuit source state that was encoded using 
the sth transmission device.  The resulting kth command contains the extractable RF-DNA fingerprints of 
the mth message.  Such credentials may be validated by a designated dth authenticator device 𝑅𝑅𝑅𝑅𝑑𝑑 upon 
receipt of a new claim. 
 

Device-Specific Decoding Rule 
We now focus on defining a decoding procedure of RF-Events to reveal the logical and physical 

informational content of 𝑚𝑚′𝑟𝑟 claimed credentials by a specified authenticator device 𝑅𝑅𝑅𝑅𝑑𝑑.  In general 𝑅𝑅𝑅𝑅𝑑𝑑 
observed RF-DNA fingerprint extractions from a specified transmitter are statistically independent from 
all other receivers 𝑅𝑅𝑅𝑅𝑖𝑖.  The encoded circuit credential 𝑐𝑐𝑘𝑘 from Eq(3) are transmitted across a 
communication medium (e.g. wireless).  Upon receipt of an RF-Event 𝑤𝑤𝑖𝑖, 𝑅𝑅𝑅𝑅𝑑𝑑 tests to see if 𝑚𝑚𝑖𝑖𝑗𝑗 appears 
in the authorized range 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠(𝑊𝑊).  If so, 𝑚𝑚′s chances of being accepted as authentic may increase, otherwise 
𝑚𝑚𝑖𝑖𝑗𝑗 is rejected for command processing.  𝑅𝑅𝑅𝑅𝑑𝑑  recovers the source circuit state from 𝑚𝑚𝑖𝑖𝑗𝑗 by physically 
determining (i.e. RF measurements) its RF-Biomarker levels under policy-based device encoding rule for 
a given circuit.  We assume 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 has perfect knowledge of the communication system, including all 
devices used to encode the circuit states.  However, 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 does is unaware of any inherent secret RF-DNA 
characteristics that a source circuit employs as a natural signature encoding rule known by the 𝑟𝑟 𝑑𝑑 pairing 
of  𝑇𝑇𝑅𝑅𝑠𝑠 and 𝑅𝑅𝑅𝑅𝑑𝑑 .  𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 may succeed in spoofing if and only if the RF-DNA fingerprint indicators of 𝑚𝑚𝑖𝑖𝑗𝑗 
match the fingerprints of previously agreed upon  circuit state encodings used prior to communication.  The 
subspace of valid messages as observed by authenticator 𝑅𝑅𝑅𝑅𝑑𝑑 , is unique for each device, however a 
receiver’s ability to sample a continuous RF-Event is imprecise and therefore there are no perfect matches.  
A tolerance interval may be effective in mitigating this imperfection. 
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Generally, any logical command can be decoded using localized RF component features when a 
policy has specified the communication source to destination path.  We state this more formally as follows; 

𝑓𝑓𝜌𝜌𝑇𝑇𝑑𝑑�(𝑐𝑐𝑘𝑘 ,𝑚𝑚𝑖𝑖𝑠𝑠)  𝑤𝑤𝑖𝑖𝑠𝑠� = 𝑒𝑒𝑇𝑇𝑇𝑇𝑖𝑖                                                                 (15) 

Where 𝑝𝑝𝑖𝑖 specifies 𝑓𝑓𝜌𝜌𝑇𝑇𝑑𝑑 as an authorized authenticator/observer of RF-Event  𝑤𝑤𝑠𝑠 generated by 
device encoding rule 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠.  When physical evidence is discarded from incoming RF-Events, it may be 
possible for 𝑅𝑅𝑅𝑅𝑑𝑑 to accept 𝑚𝑚 as authentic based on the decoded bit-level credential match, despite having 
originated from an untrusted physical circuit source state.  To see this, select any arbitrary receiver of 𝑚𝑚𝑖𝑖𝑗𝑗 
which employs conventional protocols to decode (1) to obtain the kth logical bit-level command 𝑚𝑚𝑖𝑖𝑗𝑗 ↦
�𝑐𝑐𝑖𝑖𝑗𝑗�𝑘𝑘 = 𝑐𝑐𝑘𝑘𝐵𝐵𝐻𝐻𝑇𝑇 without regard to the associated physical RF-DNA of 𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠 .  Due to high demands for 
interoperability, there may be multiple instances of RF-events generating sources which generate  𝑚𝑚 that 
maps to the correct logical interpretations of command 𝑐𝑐’s logical (bits) credentials.  As an example, 
consider of mapping of 𝑒𝑒 = 3  interoperable encoding devices that can transmit in only three authorized 
circuit source states 𝒘𝒘𝒘𝒘  where  𝑟𝑟 = 3.  We have 𝑒𝑒𝑠𝑠 = 9 statistically unique messages are generated using 
the circuit source encodings to produce three logically equivalent commands that can be decoded by 𝑅𝑅𝑅𝑅𝑑𝑑.  
The state of the circuit during transmission of 𝑚𝑚 can be from a single source or from multiple sources so 
long as they are physically distinct with respect to the final baseband signal that is modulated onto the 
circuit’s RF carrier.  Example: When 𝑻𝑻𝑻𝑻 𝟑𝟑 = 𝑭𝑭𝑻𝑻𝑻𝑻 𝟑𝟑 encoding rule is used to encode circuit state 𝒘𝒘𝟑𝟑, a unique 
message 𝑪𝑪𝟑𝟑𝟑𝟑 is produced that is logically decodable by 𝑹𝑹𝑻𝑻𝑶𝑶  as a valid  command 𝒄𝒄𝟑𝟑 and is be expressed 
as;  �𝑭𝑭𝑻𝑻𝑻𝑻𝟑𝟑(𝒘𝒘𝟑𝟑)𝑪𝑪𝟑𝟑𝟑𝟑� = 𝒄𝒄𝟑𝟑𝑩𝑩𝑹𝑹𝑵𝑵. Notice that when devices 𝑻𝑻𝑻𝑻 𝟏𝟏 and 𝑻𝑻𝑻𝑻 𝟐𝟐 are used in an identical 
configuration, the logical decoding of 𝑪𝑪𝟑𝟑𝟑𝟑 = 𝑪𝑪𝟏𝟏𝟑𝟑 = 𝑪𝑪𝟐𝟐𝟑𝟑 when the physical characteristics of the RF-
Event is discarded during receipt by   𝑹𝑹𝑻𝑻𝑶𝑶. 
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ANNEX X: Composite RF-DNA Strength Augmentation 

Multiple decision-support thresholds employed in parallel improves the baseline 
diagnostic test of RF-DNA fingerprinting.  A benchmark RF-DNA signature template 
utilizes fingerprints from authorized circuit source states to develop authentication 
support credentials.  A physical network configuration transmits and receives modulated 
messages from trusted sources for authentication using exchanged RF-DNA 
fingerprints.  This article aims to improve the confidence of logical-only claims using a 
combined physically determined RF-DNA fingerprint to augment authenticity 
verification in uncertain conditions. Results show an initial baseline intrinsic accuracy 
of 84% using a composite RF-DNA fingerprint containing eight distinct features 
improves to near perfect infectious and benign correct classification. The infectious 
credential acceptance rate improves from 23.3% (baseline) to 100% (augmented).  
Multiple authentication verification mechanisms generally increase the intrinsic 
accuracy of a composite RF-DNA fingerprint classifier.    

 
Introduction  

A diagnostic radio frequency distinct native attribute (RF-DNA) fingerprint 
template is developed as an initial classification baseline for mitigating infectious 
credential acceptance in a network environment.  The baseline intrinsic accuracy of the 
classifier is augmented using multiple classifiers sing three main treatments.    The first 
treatment incorporates ordinal data thresholds that employs a majority + 1 rule for 
classification.  The second treatment incorporates continuous data thresholds by 
dividing the baseline confidence interval into four weighted risk zones.  In all cases, the 
initial baseline threshold employs a Euclidean distance measure of similarity to classify 
logical credentials contained within received RF modulation emissions as either benign 
or infectious.  If a RF pulse’s underlying physical credential matches the template, then 
the logically claimed credential classification is a genuine benign credential.  However, 
when an infectious classification occurs, the claimed contents of the RF pulse are 
untrusted and may cause undesirable network behavior called network disease if 
processed by a network node.     

Background 

Measuring Diagnostic Accuracy 

When conducting analysis of two independent (logical vs physical attributes) 
variables produced by physical RF transmission events we evaluate the performance of 
a diagnostic test (binary classifier) to correctly classify the condition of the RF-carrier’s 
symptoms and ultimately to classify the paired diagnostic condition of a logical and 
physical signature comparison.  A gold standard (GS) is developed to conduct a 
prediction test after signature collection and combined credential classification [39].     

Using a conventional 2x2-count table (confusion matrix) [61], the preliminary 
assessment of the GS is presented which accounts for the total number of carrier samples 
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(N) in the population.  A true positive (TP) GS test result occurs when a received 
carrier’s true signature condition is benign and a diagnostic test reports a benign carrier 
condition. 

A true negative (TN) condition occurs when the carrier’s true status is infectious 
and the diagnostic result is infectious.  When a diagnostic test reports an infectious 
carrier condition and the true condition indicated by the GS are benign, a false positive 
(FP) count is increased.  Similarly, when a GS indicates a true benign condition and the 
test reports an infectious condition, a false negative (FN) result occurs.  The results of 
the count table indicate the probability or predictability of the two conditions.   

The sensitivity (Se) of the diagnostic test provides the probability that a test 
result will be positive (benign) and is determined by the TP count divided by the total 
number of carriers specified as signature immunizations.  The specificity (Sp) of 
diagnostic testing is the converse of the Se and measures the capability to exclude 
infectious carrier conditions.  The prevalence of a specific network threat does not affect 
the intrinsic diagnostic accuracy indicated by a test’s Se or Sp [61].   

When considering network response or treatment options when infectious 
(unauthorized or rogue) carriers are indicated, a policy defined decision threshold (𝑑𝑑𝑇𝑇) 
is used.  For binary data, dT is used that best dichotomizes uncertain conditions into one 
of two classes.    Here, dT is determined using signature values of observed RF-
biomarker levels, which indicate the most dissimilarity or disease risk(𝑋𝑋).   A trade off 
exists when developing a dT that best classifies a GS condition. A net benefit is realized 
when an observed abnormal network disease outcome occurs despite diagnostic 
treatment against infectious carriers.  The overall cost of disease avoidance is realized 
when observers (authenticator device node) needlessly (utilize scarce resources) suffer 
because infectious carriers do not exist in the network environment (i.e.𝑝𝑝 = 0), yet 
treatment is still provided.  A Type-I error measures the FP rate that occurs in proportion 
to the total number of true benign carriers that exist in the GS. A Type-II error is 
determined by the FN rate of a carrier’s tested result as benign when in fact the RF-
carrier is infectious.   Predictive values quantify the usefulness of the paired diagnostic 
test result for network disease mitigation [39].  The probability of a positive test is the 
positive predictive value (PPV) and the likelihood of a negative test result is the negative 
predictive (NPV). 

Methodology 

The configuration of three transceiver devices appears as a wireless 
communications network in Figure 1. Policy determines authorized transmission and 
receiver device pairs.  As shown, trusted transmission circuit source state (𝑇𝑇𝑅𝑅𝑠𝑠) is 
authorized to generate logical messages 𝑚𝑚𝑖𝑖 using some credential (𝑐𝑐𝑘𝑘) and transmit its 
modulated RF-event towards a specified destination authenticator 𝑅𝑅𝑅𝑅𝑑𝑑 for diagnostics 
of the credentials used to enhance the determination of the true origin integrity of 𝑚𝑚𝑖𝑖.  
An opponent transmitter (𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃) aims to impersonate or modify 𝑚𝑚𝑖𝑖 generated by 𝑇𝑇𝑅𝑅𝑠𝑠 in 
order to bypass bit-level authentication mechanisms and gain unauthorized access to 
resources controlled by 𝑅𝑅𝑅𝑅𝑑𝑑.  𝑅𝑅𝑅𝑅𝑑𝑑′ 𝑟𝑟  network treatment and wellness plan (RF-DNA 
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immunization using RF-Biomarkers) against a specific network disease caused by 
infectious credential acceptance is employed to mitigate the prevailing threat presented 
by 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃.   

Prior to conducting network operations, the memory emplacement of RF-DNA 
fingerprints of 𝑇𝑇𝑅𝑅𝑠𝑠  occurs inside 𝑅𝑅𝑅𝑅𝑑𝑑  as a trusted benign signature (immunization).  
During normal communication operations, a comparison of a new claim’s fingerprint 
against the baseline signature occurs.  The diagnostic tests provides a match (BENIGN) 
or infectious (No Match) result.  When an infectious result occurs, an appropriate 
treatment response follows to mitigate the occurrence of network disease in the future. 
A benign diagnostic result improves the confidence of logical credential mechanism 
validations. 

 

 

Figure 72.  Impersonation Threat Model      

There are 1100 training pulses observed by 𝑅𝑅𝑅𝑅𝑑𝑑   and which form the basis of an 
independently observed or device specific benchmark RF-Event diagnostic test.  To 
determine the strength of the training pulses, a self-similarity test assists in determining 
if a distribution of pulses appears normal.  After validating that the distribution for the 
composite RF-DNA was normally distributed, the self-similarity test,  where each 1100 
pulses compares to all other 1099 pulses.  The average Euclidean distance between all 
pulses becomes the benchmark’s composite average strength score.  This score simply 
provides a measure of well each training pulse looks like its population of peers.  In 
theory, each pulse would look perfectly identical, however we aim to obtain statistical 
similarity with little population variance.      

To evaluate the composite RF-DNA benchmark strength, 150 new credential 
claims from source 𝑇𝑇𝑅𝑅𝑠𝑠 are generated and diagnosed by 𝑅𝑅𝑅𝑅𝑑𝑑.  Next, an additional set of 
150 new credential claims are generated from unknown source 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃 using identical 
modulation schemes and communication protocols as 𝑇𝑇𝑅𝑅𝑠𝑠.  Finally, a device specific 
Gold Standard (GS) test development begins, where the stored RF-DNA fingerprint 
results extracted from the new 150 benign claims from 𝑇𝑇𝑅𝑅𝑠𝑠, are modified by randomly 
selecting infectious results extracted 𝑇𝑇𝑅𝑅𝑉𝑉𝑃𝑃𝑃𝑃.  The final GS contains a 150-sample 
dataset, using a 𝑝𝑝 = 20% threat prevalence rate, yielding 120 TRUE benign pulses and 
30 TRUE infectious pulses.  Each composite contains eight RF measurements taken 
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over the same region of interest which produces eight distinct RF-biomarker levels for 
each measurement. 

Baseline Decision Threshold Selection 

The tolerance of IAC experimentally increases from zero to one in increments 
of .01 to determine if the area under the curve is significant.  An arbitrary tolerance of 
0.05 selection results in a 95% confidence interval of ICA.   

In this article the benign credential acceptance (BCA) is synonymous to a TP, 
while a count of infectious credential acceptance (ICA) is synonymous is TN.  The 
probability rates for sensitivity (Se) specificity (Sp), intrinsic accuracy (ACC) BCA and 
ICA are compared using three parallel decision support threshold treatments.   

A baseline intrinsic accuracy score results using a fixed tolerance of  𝑑𝑑𝑇𝑇 = 0.05 
and a normalized Euclidean distance metric.  After the baseline results were determined, 
we considered augmenting the results to improve ACC using ordinal and continuous 
valued thresholds.  The objective of each treatment aims at maximizing the ACC while 
minimizing the rate of ICA.   

Fusion of Multiple Decision-Support Cues (Multimodal/Multi-factor) 

An decision-support cue provides useful information that is considered in 
making decisions after the knowledge of the cue’s state is considered (posterior).  The 
states of a cue contains rich information characteristics such that certain states provide 
more or less information depending on the characteristics or features correlated with the 
cue’s indicated state. An indicator such as a RF fingerprint should satisfy the following 
requirements of universality, uniqueness, permanence and collectability.   In RF-DNA 
fingerprinting Temple et. al uses the main characteristics of amplitude, frequency, 
phase.  The features of the RF-DNA fingerprints are then collected using a RF 
measurement device that captures the skewness, kurtosis, variance and standard 
deviation for each characteristic to meet the requirements above. In order to make a 
fingerprint useful, the features of a unique subject must be stored and later recalled for 
comparison to a new fingerprint.  During the comparison, the same characteristics are 
considered and the status of the feature cues are measured.  In dynamic network decision 
making, the state of such cues are often used to enhance a person’s situational awareness 
(SA) [56] about the network’s behavior during troubleshooting or normal operation 
procedures. Each feature may be collected by one or more sensor devices (modality) to 
form a composite RF-DNA fingerprint which is contain the richest indicator features 
concerning the cue’s original or more natural state.   

Keeping an accurate track of a cue’s state in a dynamic environment may lead 
to unacceptable misclassification rates for decision makers. For this reason, a unimodal 
approach that utilizes a single authentication classifier may not be trusted in uncertain 
situations such as noise or high threat prevalence.  By integrating or fusing multiple 
decision-support cues, the accuracy of unimodal classifier performance is generally 
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improved when Invalid source specified. multifactor (multimodal) authentication 
mechanisms are combined [9] Invalid source specified..   

Fusion conducted during earlier stages of match scoring is preferred in practice 
because of the ease of access to output scores when classifier modalities are poorly 
integrated or simply incompatible or when no access is available to a modality’s raw 
feature extraction data-set Invalid source specified.. Nonetheless, Ross suggests that 
multimodal fusion at the feature extraction level may provide better recognition results, 
despite the difficulties in practice. 

  Bigun employs a Bayesian-based algorithm which aggregates and calibrates 
expert opinion match scores using independent classifier aggregation assessments and 
aggregation based on classifiers with some level of dependency for assessments prior to 
decision calibration Invalid source specified.. In practice, multiple techniques should 
be combined or  integrated to improve verification accuracy [55]. Brunelli combines 
acoustical and visual classifiers to improve authentication verification systems [55].  In 
some cases, the integration of multiple classifiers may degrade overall performance, and 
when combined, the classifier’s result must be 

Here, we follow the technique of Bigun for the second case where a single 
receiver employs multiple independent RF-measurement classifiers towards the 
development of a single decision classification score.  This technique is different from 
other RF fingerprinting techniques because it employs multiple decision thresholds to 
enhance a composite unimodal RF-DNA fingerprint template.  In addition, each 
component feature of the fingerprint has its own tunable classifier at the decision level 
Invalid source specified..  In this article, such decision-level features are RF-
Biomarkers and represent the physical RF characteristic of a received transmission 
event.  As new RF events arrive for authentication verification, specific RF-Biomarker 
level extractions compare against benchmark levels. Specified decision thresholds 
determine the comparison score’s classification result that indicates normal or abnormal 
network behavior.     

Ordinal 𝑶𝑶𝑶𝑶𝑶𝑶 Selection/ Augmentation1 

The two additional decision support augmentations include ordinal (𝑀𝑀𝑑𝑑𝑇𝑇)  and 
continuous (𝑧𝑧𝑑𝑑𝑇𝑇) decision-support criteria thresholds.  The metric for 𝑀𝑀𝑑𝑑𝑇𝑇 match 
scoring considers the overall count of selected RF-Biomarker levels that passed for a 
given pulse.  Given the variability in self-similarity inherent in a RF-DNA fingerprint  
benchmark profile, a general rule suggests that a majority of RF-Biomarkers should 
meet or exceed acceptance limits for a given threshold selection.  While this may seem 
sound for acceptance, the converse may not hold since any single failure to meet a 
benchmark level by any RF-Biomarker may disqualify the acceptance of the entire 
pulse. 

Continuous Risk Zones  𝒁𝒁𝑶𝑶𝑶𝑶 Selection/ Augmentation2 
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The second threshold considers continuous data to partition the original 
benchmark baseline confidence  interval into multiple (weighted) risk zones.  Zone-1 
indicates a RF-Biomarker match score that is 98.3% similar or better to a trusted 
benchmark.  A Zone-2 result indicates match score outside of Zone-1 and meets a 
96.67%  benchmark similarity. A  Zone-3 indicates that a RF-Biomarker exceeded the 
boundaries of Zone-1 and Zone-2, but falls within the original baseline 95% confidence 
interval {U,L}.  All other match scores values are considered Zone-4 critical failures 
using 𝒁𝒁𝑶𝑶𝑶𝑶.  Each RF-Biomarker’s zones are independent.  A total of 1200 RF-
Biomarkers  (8RF-Biomarkers/Pulses* 150Pulses) are considered during this 
experiment. 

 

 

Figure 73. RF-Biomarker Risk Zones of Acceptance 

Results & Analysis 

As an initial first step towards developing a diagnostic test, the aim was to collect 
a set of RF-DNA fingerprints, usable as signature template profiles for integration as a 
network treatment and wellness plan.  During the RF-DNA fingerprint collections 
process, pulses contained significant variation from pulse to pulse.  Some explanation 
occurs from sampling procedures, while other variations occur due to a lack of device 
synchronization.  The USRP2922 devices are development and testing only devices and 
not as intended as end network nodes.  We improved the synchronization between 
devices so that a binary string reception and synchronization offset occurs prior to 
demodulation in order to recover and decode the baseband digital string with 
confidence.  This step provided verification that the proper message was readable.  The 
reliability of successful receipt was approximately 60%.  To mitigate this unfortunate 
effect, the RF-event was collected such that the start and end time of each pulse was 
statistically identical between pulse collections yielding statistically consistent pulse 
collections of a known RF-event.  To minimize triggered pulse impurities, a filter 
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removes nonconforming pulses in the final benchmark distribution.  Using this method, 
we improved a saved pulse rate to nearly 80% acceptance during raw collections.  

Baseline Benchmark Results 

A ROC curve of Figure 4. Indicates a trade-off between  the rate of benign 
credential acceptance (BCA) versus the infectious credential acceptance (ICA) rate 
when varying a tolerance threshold value from 0 to 1.  The upper left hand quadrant 
suggests an optimized system may achieve approximately 85% BAC, while allowing 
approximately 20% of infectious credentials.  The red line indicates a chance line.  The 
ROC indicates a threshold of less than 0.2 would provide a 80% confidence interval for 
BCA, while risking a 20% ICA rate.  The lower bound of the ROC indicates that a 𝑑𝑑𝑇𝑇 
selected below 0.05 may result in less than 70% BCA yet achieve over 90% infectious 
credential rejection.  This article arbitrarily selected a 𝑑𝑑𝑇𝑇 = 0.05 with an infectious 
credential prevalence rate 𝑝𝑝 = 0.2.  These selections provide a 95% confidence interval 
for BCA, while allowing about 5% ICA.    As the ROC curve shows, baseline accuracy 
fails to achieve 100% accuracy however, when augmented with additional threshold 
conditioning, near perfect classification is possible.  The summary performance results 
obtained appear in Tables 2-9.   

 

Figure 74. Benign vs. Infectious Credential Acceptance.  

Table 35 shows the composite RF-DNA benchmark profile of a collection of 
1100 pulses for 𝑇𝑇𝑅𝑅𝑠𝑠′s normal RF-Biomarker response levels.  The diagnostic benchmark 
(DB) strength consistency across all RF-Biomarker levels for the transmitter was 
75.7480%.  Using a 95% tolerance interval, valid average RF-Biomarker levels could 
fall within 72 – 79%.  The results of comparing a single infectious credential show a 
similarity of 64.97%.  When using a gold standard, against a population of 150 new 
credential claims and a 20% threat prevalence, the average similarity of the benchmark 
dropped to 72.67%.  While all new 150 benign claims averaged 76.02% benchmark 
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similarity.  Table 35 indicates that the benchmark similarity does provide some level of 
discrimination between benign and infectious credentials.       

 
Table 35 Similarities for self, vs. (n=150) batch vs. single infectious RF-Event 

RF-Biomarker 
Classifier 

Infectious  
Pulse #5 

Gold Standard 
Batch 

 N= 150, p=0.2 

DB=1100 
Benchmark 

𝒃𝒃𝟏𝟏 14.20 24.11 23.87 
𝒃𝒃𝟐𝟐 19.10 83.61 99.87 
𝒃𝒃𝟑𝟑 97.17 61.11 59.83 
𝒃𝒃𝟒𝟒 94.99 97.71 99.72 
𝒃𝒃𝟓𝟓 33.55 24.77 23.86 
𝒃𝒃𝟔𝟔 65.83 92.31 99.10 
𝒃𝒃𝟗𝟗 97.46 98.83 99.86 
𝒃𝒃𝟒𝟒 97.46 98.83 99.86 

Composite 
Strength Score 64.97 72.67 75.74 

Baseline Benchmark  

The baseline RF-DNA diagnostic benchmark is composed of eight independent 
RF-biomarker components and is visualized in as the green bar plot in Figure 5 to 
represent the average response of true benign fingerprint similarity levels that are 
observed by 𝑅𝑅𝑅𝑅𝑑𝑑 from the transmission source 𝑇𝑇𝑅𝑅𝑠𝑠.    At the top of each RFB, a three-
tier 95% tolerance interval indicates how well a claimed credential’s claimed level 
matches its benchmark.   

As depicted in Figure 6, a set of 𝑒𝑒 = 150 pulses are received and diagnosed for 
network disease to enhance the confidence of logical authentication validation in 
uncertainty. The batched processed GS file’s results are compared to the benchmark, 
where the claimed values are indicated in gray and the benchmark level is in green. An 
examination of Figure 6 indicates that  𝑹𝑹𝑭𝑭𝒃𝒃𝟏𝟏 𝑹𝑹𝑭𝑭𝒃𝒃𝟓𝟓, 𝑹𝑹𝑭𝑭𝒃𝒃𝟗𝟗, and 𝑹𝑹𝑭𝑭𝒃𝒃𝟒𝟒 show a strong 
zone1(low risk) level of similarity zone acceptance, while 𝑹𝑹𝑭𝑭𝒃𝒃𝟐𝟐 and 𝑹𝑹𝑭𝑭𝒃𝒃𝟔𝟔 indicates a 
significant RF-Biomarker level deficiency and fails to meet any target zone of risk 
acceptance.  𝑹𝑹𝑭𝑭𝒃𝒃𝟔𝟔 also fails to meet zone tolerance requirements.  𝑹𝑹𝑭𝑭𝒃𝒃𝟒𝟒 indicates a 
Zone-2 (medium risk) acceptance. 

The benchmark RF-Biomarker levels of a composite RF-DNA fingerprint 
profile is displayed as green bars that range in concentration from zero to one.  The 
benchmark is used to assist new credential authentication claims in uncertainty.  A set 
of 150 new pulses are compared as a batch process to detect the possibility of infectious 
credential acceptance.  The diagnostic results are indicated in grey and are plotted on 
top of the benchmark levels.  There were a total of 120 benign pulses and 30 infectious 
pulses in this batch dataset.  As shown, the system correctly diagnosed all benign pulses, 
and correctly specified the infectious pulses that failed to meet RF-biomarker 
thresholds.  Overall, the batch indicates concern for infection that may lead to network 
disease specifically with a low level of 𝑹𝑹𝑭𝑭𝒃𝒃𝟏𝟏 and 𝑹𝑹𝑭𝑭𝒃𝒃𝟔𝟔. The levels of  𝑹𝑹𝑭𝑭𝒃𝒃𝟑𝟑 indicate a 
medium risk of infection.  Batch processing might best be used as a forensics 
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augmentation tool for example, but may not be readily useful for real-time information 
systems that require a pulse by pulse response. 

 

   

Figure 75.  Benchmark vs. single infectious credential from 𝑇𝑇𝑅𝑅5.   

Infectious Pulse #5 was selected from a Gold Standard benchmark test 
developed specifically for trusted device 𝑇𝑇𝑅𝑅4.  Similarity results that compare the single 
pulse to the composite RF-DNA fingerprint is shown on the left of Table 36. RF-
Biomarkers 1-6 fail all diagnostic tests, while markers 7-8 fall within a medium risk of 
truly being infectious.  A significant low level of dissimilarity for 𝑹𝑹𝑭𝑭𝒃𝒃𝟐𝟐,𝑹𝑹𝑭𝑭𝒃𝒃𝟔𝟔 suggest 
a significant deficiency in benign levels that wold be expected to be found in a normal 
benign pulse received from 𝑇𝑇𝑅𝑅4, while the concentration of 𝑹𝑹𝑭𝑭𝒃𝒃𝟑𝟑 and 𝑹𝑹𝑭𝑭𝒃𝒃𝟓𝟓 indicate 
significant high concentration levels that are outside the observed (𝑅𝑅𝑅𝑅𝑑𝑑) boundries for 
the composite RF-DNA fingerprint.  The entire 95% confidence interval spans the width 
of red error bars for the benchmark levels.  Yellow error bars indicate a medium risk of 
ICA.  The green error zone indicates that a RF-Biomarker has a similarity level that 
matches a benchmark profile, which suggests a low level of risk. 

The Gold Standard developed for USRP2922 Tx4 represents the base benign 
credential file with 150 pulses.  Tx5 is the opponent device that provides infectious 
pulses at a rate of  𝑝𝑝 = 0.2  or 20% of the N benign pulses.  The truth of each pulse is 
withheld from the observer 𝑅𝑅𝑅𝑅𝑑𝑑 until during testing.  After testing, a count table of BCA 
(TP), ICA (TN), FP, FN presents the receiver diagnostic performance findings.  

Table 2 provides a summary of the counts that occurred from the 𝐺𝐺𝑆𝑆 diagnostic 
test of 150 new pulse claims.  The system diagnoses results in 143 benign and seven 
infectious classifications.  In truth, there are 120 benign and 30 infectious pulses in the 
𝐺𝐺𝑆𝑆 population.    
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Table 36 Baseline (2x2) Count Table using Euclidean Distance  
True Condition 

Status Positive (Test =1) Negative 
(Test =0) Totals 

Benign = 1 BCAs 120 FN 0 120 
Infectious = 0 FPs 23 ICA 7 30 

Totals  143  32 150 
 

A probability table provides a measure of how likely a system will perform in 
normal operations when placed in a representative operational environment. The 
probability can be determined using the 𝐺𝐺𝑆𝑆 total population size to determine the rate 
of acceptance for 𝐵𝐵𝑅𝑅𝑇𝑇 and 𝐼𝐼𝑅𝑅𝑇𝑇.  The 𝑆𝑆𝑒𝑒 was found to be 100%, while the false positive 
rate was high at 76.67%.  Although the false negative rate was low at 0%, the 𝑆𝑆𝑝𝑝 was 
23.33%.  The overall intrinsic accuracy is used as a single estimate of how well the 
receiver will perform and considers the 𝑆𝑆𝑒𝑒 and 𝑆𝑆𝑝𝑝 rates.  The baseline benchmark 𝑇𝑇𝑅𝑅𝑅𝑅 
without improvements was computed to be 84.0% recalling the value indicated in the 
ROC from Figure 4. Above, this empirical result is close to the estimate maximum of 
85% occurring at the elbow of the curve.  

 
Table 37.  Baseline Diagnostics Probability Results  

True Condition 
Status Positive (Test =1) Negative (Test =0) Totals 

Benign = 1 Se 100% FNR 0% 1 
Infectious = 0 FPR 76.67% Sp 23.33% 1 

 

Baseline Benchmark + 𝑶𝑶𝑶𝑶𝑶𝑶 Results 

After the benchmark intrinsic accuracy was experimentally determined, we 
introduced the additional threshold treatments to see if we could improve upon the rate 
of specificity.  First, we employed the RF-biomarkers as described above but we 
included a minimum count of five that must meet passing requirements before the entire 
pulse if accepted as benign.  This improvement produced an immediate decrease in the 
baseline FPR down to 0%.  At the same time, the ICA rate increased from seven 
infectious pulses detections to 30 (100%) detection rate.  The support of an ordinal 
valued threshold increases the 𝑇𝑇𝑅𝑅𝑅𝑅 percentage by 328.63%.   

Similar results were observed when the baseline benchmark performance was 
enhanced using risk zones and continuous date values.  The risk zones ranged from 1 to 
4.  The BCA count declined by 2 pulses compared to the baseline benchmark, however 
the diagnosis of infectious pulses increased to 100% detection of the 30 pulses that were 
contained within the GS file.  The two misses BCA pulses were counted as false 
negative pulses.  The zone based ACC also improved to 100%. 
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Table 38. Count table of baseline Benchmark with treatments 
Threshold BCA 

(TP) FP ICA 
(TN) FN 

dT = 0.05 120 23 7 0 

𝑶𝑶𝑶𝑶𝑶𝑶= 5/8 120 0 30 0 

𝒁𝒁𝑶𝑶𝑶𝑶= 2.125 118 0 30 2 

 
Table 39. Results of baseline, ordinal and continuous zone diagnostic 

Threshold Se% FPR
% Sp% FNR

% 
NPV

% 
PPV

% 
ACC

% 
dT = 0.05 100 76.67 23.33 0 100 82.76 84.0 

𝑶𝑶𝑶𝑶𝑶𝑶= 5/8 100 0 100 0 100 96.77 96.77 

𝒁𝒁𝑶𝑶𝑶𝑶= 2.125 98.3 0 100 1.67 100 100 98.67 

 

The risk zones performance is further compared against the benchmark’s results 
to understand the expressive nature of risk labels.  1200 RF-Biomarkers were assessed 
using the GS file dataset.  The benchmark diagnosed 653/1200 RF-Biomarkers as being 
benign, in actuality there were 960 truly benign RF-Biomarkers contained within the 
dataset.  Using the risk zones, we see that 605/960 benign pulses (63%) were within the 
low risk zone of acceptance. Approximately 4.6% of benign RF-Biomarkers were 
diagnosed as medium risk zones for infection.    

  
Table 40. Baseline vs. 𝒁𝒁𝑶𝑶𝑶𝑶 comparison for a 95% TI, n=1200 RF-Events 

 Zone Baseline  
Zone1 605 653 Pass 
Zone2 10 - - 
Zone3 45 - - 
Zone4 540 547 Fail 
%Pass 55.0 54.42  

Benign  960 960  
Infectious  240 240  

Totals 1200 1200  

 

Table 41.  Ordinal and Continuous data threshold performance (Averaged 10 Trials) 
edT eACC% ePRt 𝑶𝑶𝑶𝑶𝑶𝑶 oACC% oPRat 𝒁𝒁𝑶𝑶𝑶𝑶 zACC% zPRt 

BM 84.0 94.67 0 80.0 100 0 20.00 55.08 
   1 85.3 94.67 .5 20.00 54.75 
   2 86.67 96.00 1 20.00 55.5 
   3 96.67 82.00 1.5 20.00 54.42 
   4 100 80.00 2 25.33 55.25 
   5 99.5 79.33 2.125 98.67 55.17 
   6 23.3 3.33 2.25 99.33 54.58 
   7 20.0 0 2.375 99.33 54.92 
   8 20.0 0 2.5 99.33 54.50 
      3 100.0 55.25 
      3.5 96.67 54.50 
      4 80.0 55.33 
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Conclusions and Future Recommendations 

Using RF-DNA benchmarks as the basis for diagnosing infectious credentials, 
the research found significant improvement in the intrinsic accuracy by using multiple 
parallel decision-support thresholds.  Such a scheme shows tremendous potential for 
larger datasets and devices synchronized for network communication.  The benchmark’s 
𝑇𝑇𝑅𝑅𝑅𝑅 improved to over 99.99% using 𝑀𝑀𝑑𝑑𝑇𝑇 = 𝑠𝑠𝑢𝑢𝑃𝑃 𝑉𝑉𝑓𝑓 𝑃𝑃𝑎𝑎𝑠𝑠𝑠𝑠𝑉𝑉𝑑𝑑

𝑡𝑡𝑉𝑉𝑡𝑡𝑎𝑎𝑙𝑙 𝜌𝜌𝐹𝐹−𝐵𝐵𝑖𝑖𝑉𝑉𝑃𝑃𝑎𝑎𝑃𝑃𝑘𝑘𝑉𝑉𝑃𝑃𝑠𝑠
= 5

8
 decision-support 

threshold for acceptance for each pulse received.  In addition, the benchmark’s 𝑇𝑇𝑅𝑅𝑅𝑅 
using 𝑧𝑧𝑑𝑑𝑇𝑇 improves to 98.67%, providing more classification expressiveness.  These 
findings suggest a multiple decision-support threshold criteria for benchmark level 
comparisons, coupled with component RF-Biomarker level augmentation provides 
improved network health for the prevention of network disease.  An integrated 
multimodal verification technique allows dynamic selection of critical indicators that 
best discriminate between two classes using fusion at the feature and decision levels for 
verification. 

Future Research Recommendations 

 Conduct a ‘Forensics Analysis’ augmentation application Study for batch post-
processing of log files to determine if a receiver/network has or is likely to develop a 
specified network disease outcome.  A comparison of benchmark values can be made 
using the RF-DNA and component RF-Biomarkers contained within the log files to 
determine if RF-DNA treatment is recommended to prevent or cure known or potential 
network disease (e.g. impersonation attacks).  Test the device specific Gold Standards 
using more than one opponent to see how it does against like and dissimilar devices.  
Provide appropriate recommender system for infectious diagnosis using continuous data 
and risk zone classifications. 
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